K-means聚类模型算法的应用与原理

K-means聚类是一种非常流行的聚类算法,它的目标是将n个样本划分到k个簇中,使得每个样本属于与其最近的均值(即簇中心)对应的簇,从而使得簇内的方差最小化。K-means聚类算法简单、易于实现,并且在许多应用中都非常有效。

K-means算法的基本步骤:

  • 选择初始中心:随机选择k个样本点作为初始的簇中心,或者使用K-means++算法来更智能地选择初始簇中心。

  • 分配样本:将每个样本点分配到最近的簇中心,形成k个簇。

  • 更新簇中心:重新计算每个簇的中心,通常是簇内所有点的均值。

  • 迭代优化:重复步骤2和3,直到簇中心不再发生显著变化,或者达到预设的迭代次数。

  • 终止条件:当簇中心在连续迭代中的变化小于某个阈值,或者达到预设的最大迭代次数时,算法终止。

K-means算法的数学表示:

设 C={c1,c2,…,ck}C={c1​,c2​,…,ck​} 为簇中心的集合,X={x1,x2,…,xn}X={x1​,x2​,…,xn​} 为样本点集合。

K-means的目标是最小化簇内误差平方和(Within-Cluster Sum of Squares, WCSS):

J©=∑i=1k∑x∈Si∣∣x−ci∣∣2J©=∑i=1k​∑x∈Si​​∣∣x−ci​∣∣2

其中,SiSi​ 是簇 cici​ 中的样本点集合。

K-means算法的优缺点:

优点

  • 算法简单,易于理解和实现。
  • 在处理大数据集时,计算效率较高。
  • 可以用于发现任意形状的簇。

缺点

  • 需要预先指定k值,而k值的选择可能依赖于领域知识或试错。
  • 对初始簇中心的选择敏感,可能导致局部最优解。
  • 对噪声和异常点敏感,可能影响簇中心的计算。
  • 只能发现数值型特征的簇,不适合文本数据等非数值型数据。

K-means++算法:

K-means++是一种改进的K-means算法,用于更智能地选择初始簇中心,从而提高聚类的质量。K-means++的基本思想是:

  • 随机选择一个点作为第一个簇中心。
  • 对于每个剩余的点,计算其到最近簇中心的距离,并根据距离的平方选择下一个簇中心。
  • 重复步骤2,直到选择k个簇中心。

实际应用:

K-means聚类可以应用于多种场景,包括但不限于:

  • 市场细分:根据客户的特征将客户分组。
  • 图像分割:将图像分割成不同的区域或对象。
  • 社交网络分析:发现社交网络中的社区结构。
  • 文本聚类:对文档或新闻文章进行分组。

K-means聚类是一种非常实用的工具,但需要根据具体问题和数据集的特性来调整和优化。

下面是一个简单的Java实现K-means聚类算法的示例代码。这个示例将演示如何使用K-means算法对一组二维点进行聚类。

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;

public class KMeansClustering {

    static class Point {
        double x, y;

        Point(double x, double y) {
            this.x = x;
            this.y = y;
        }

        @Override
        public String toString() {
            return String.format("(%f, %f)", x, y);
        }
    }

    public static void kMeans(List<Point> points, int k, int maxIterations) {
        Random rand = new Random();
        List<Point> centroids = new ArrayList<>();
        // 初始化质心
        for (int i = 0; i < k; i++) {
            centroids.add(points.get(rand.nextInt(points.size())));
        }

        for (int iter = 0; iter < maxIterations; iter++) {
            // 1. 将每个点分配到最近的质心
            List<List<Point>> clusters = new ArrayList<>();
            for (int i = 0; i < k; i++) {
                clusters.add(new ArrayList<>());
            }
            for (Point point : points) {
                double minDistance = Double.MAX_VALUE;
                int closestCentroid = 0;
                for (int j = 0; j < k; j++) {
                    double dist = point.distance(centroids.get(j));
                    if (dist < minDistance) {
                        minDistance = dist;
                        closestCentroid = j;
                    }
                }
                clusters.get(closestCentroid).add(point);
            }

            // 2. 更新质心
            boolean changed = false;
            List<Point> newCentroids = new ArrayList<>();
            for (List<Point> cluster : clusters) {
                if (cluster.isEmpty()) {
                    newCentroids.add(centroids.get(0)); // 如果某个簇为空,随机选择一个质心
                    changed = true;
                } else {
                    Point newCentroid = cluster.get(0);
                    for (Point point : cluster) {
                        newCentroid = new Point(
                            newCentroid.x / cluster.size() + point.x / cluster.size(),
                            newCentroid.y / cluster.size() + point.y / cluster.size()
                        );
                    }
                    newCentroids.add(newCentroid);
                }
            }

            // 检查质心是否变化,如果没有则停止迭代
            if (!changed && centroids.equals(newCentroids)) {
                break;
            }

            centroids.clear();
            centroids.addAll(newCentroids);
        }

        // 输出最终的质心和簇
        for (int i = 0; i < centroids.size(); i++) {
            System.out.println("Centroid " + i + ": " + centroids.get(i));
            System.out.print("Cluster " + i + ": ");
            for (Point point : clusters.get(i)) {
                System.out.print(point + " ");
            }
            System.out.println();
        }
    }

    public static void main(String[] args) {
        List<Point> points = new ArrayList<>();
        points.add(new Point(1.0, 2.0));
        points.add(new Point(1.5, 1.8));
        points.add(new Point(5.0, 8.0));
        points.add(new Point(8.0, 8.0));
        points.add(new Point(1.0, 0.6));
        points.add(new Point(9.0, 11.0));
        points.add(new Point(8.0, 2.0));
        points.add(new Point(10.0, 2.0));
        points.add(new Point(9.0, 3.0));

        int k = 3; // 簇的数量
        int maxIterations = 100; // 最大迭代次数

        kMeans(points, k, maxIterations);
    }
}

V哥来解释一下:

  • Point类:一个简单的Point类,包含x和y坐标,并重写了toString方法以便于打印。

  • kMeans方法:

    • 接受一组点、簇的数量k和最大迭代次数maxIterations作为参数。
    • 随机选择初始质心。
    • 进行迭代,每次迭代包括两个主要步骤:
      • 分配点到最近的质心:对于每个点,计算其到每个质心的距离,并将点分配到最近的质心所代表的簇。
      • 更新质心:计算每个簇所有点的均值,作为新的质心。
    • 如果质心没有变化,或者达到最大迭代次数,则停止迭代。
  • main方法:创建了一个点的列表,并指定了簇的数量和最大迭代次数,然后调用kMeans方法进行聚类。

这个示例代码演示了K-means聚类的基本实现,但它没有使用K-means++算法来选择初始质心,也没有处理空簇的情况。在实际应用中,可能需要根据具体问题进行相应的优化和改进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

威哥爱编程(马剑威)

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值