- 博客(3)
- 收藏
- 关注
原创 XGBoost学习资料汇总
参考Bryan大神的XGBoost课程~ 1. 自定义目标函数 https://github.com/dmlc/xgboost/blob/master/demo/guide-python/custom_objective.py 2. 机器学习算法中GDBT和XGBOOST的区别有哪些 https://www.zhihu.com/question/41354392 3.
2017-08-31 17:09:16 656
转载 微软面试100题2010年版全部答案集锦(含下载地址)
见http://blog.csdn.net/v_july_v/article/details/6870251
2017-07-20 11:22:21 282
原创 朴素贝叶斯(MLE&MAP)
前提:朴素贝叶斯是基于特征条件独立假设成立的,即用于分类的特征在类确定的条件下都是条件独立的。 一.分类器 二.参数估计 1.最大似然估计 已知模型,参数未知。是一种参数估计方法。最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。 最大似然估计的一般求解过程: (1) 写出似然函数
2017-07-20 10:48:58 1496
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人