The 2012 ACM-ICPC Asia Changchun Regional Contest(problem B)

zoj题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4879

题意:

已知b数组,问是否 存在a数组满足b数组的要求。

解析:枚举a[i]的每一个二进制位,只有两种情况0或1,因为各个位是相对独立的,所以可以分开考虑31位,每一个是否存在解可以用2-sat来解决。之前也不知2-sat,推荐看看算法合集之《由对称性解2-SAT问题》等想关资料。


参考代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;

#define BUG cout<<"BUG"<<endl;
#define clr(arr,v) memset(arr,v,sizeof(arr))
typedef long long LL;
const int M = 505;
const int MAX_M = 1205;

int B[M][M],A[M] = {0,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912};
int h[MAX_M],num[MAX_M*MAX_M],nex[MAX_M*MAX_M],pos;
int Low[MAX_M*2],DFN[MAX_M*2],Connect[MAX_M*2],Stack[MAX_M*2],InStack[MAX_M*2],ConnectNum,top,ind;

void init()
{
    ConnectNum = pos = 0;
    ind = top = 0;
    clr(h,-1);
    clr(Low,0);
    clr(DFN,0);
    clr(InStack,0);
}

void add(int u,int v)
{
    num[pos] = v;
    nex[pos] = h[u];
    h[u] = pos++;
}

void tarjin(int x)
{
    Low[x] = DFN[x] = ++ind;
    Stack[++top] = x;
    InStack[x] = true;
    for(int i = h[x];i != -1;i = nex[i])
    {
        if(!DFN[ num[i] ])
        {
            tarjin(num[i]);
            Low[x] = min(Low[x],Low[ num[i] ]);
        }
        else if(InStack[ num[i] ])
        {
            Low[x] = min(Low[x],DFN[ num[i] ]);
        }
    }
    if(Low[x] == DFN[x])
    {
        ConnectNum++;
        int s;
        do{
            s = Stack[top--];
            Connect[s] = ConnectNum;
            InStack[s] = false;
        }while(x != s);
    }
}

bool solve(int n)
{
    for(int i = 1;i < 31;++i)
    {
        init();
        for(int j = 0;j < n;++j)
        {
            for(int k = j+1;k < n;++k)
            {
                if(j%2 == 0 && k%2 == 0)
                {
                    if(B[j][k]&A[i])
                    {
                        add(j*2,j*2+1);
                        add(k*2,k*2+1);
                    }
                    else
                    {
                        add(j*2+1,k*2);
                        add(k*2+1,j*2);
                    }
                }
                else if(j%2 == 1 && k%2 == 1)
                {
                    if(B[j][k]&A[i])
                    {
                        add(j*2,k*2+1);
                        add(k*2,j*2+1);
                    }
                    else
                    {
                        add(j*2+1,j*2);
                        add(k*2+1,k*2);
                    }
                }
                else
                {
                    if(B[j][k]&A[i])
                    {
                        add(j*2,k*2+1);
                        add(k*2,j*2+1);
                        add(j*2+1,k*2);
                        add(k*2+1,j*2);
                    }
                    else
                    {
                        add(j*2,k*2);
                        add(k*2+1,j*2+1);
                        add(j*2+1,k*2+1);
                        add(k*2,j*2);
                    }
                }
            }
        }
        for(int j = 0;j < n*2;++j)
        {
            if(!DFN[j]) tarjin(j);
        }
        for(int j = 0;j < n;++j)
        {
            if(Connect[j*2] == Connect[j*2+1])
            return false;
        }
    }
    return true;
}

int main()
{
    int n;
    while(cin>>n)
    {
        bool flag = false;
        for(int i = 0;i < n;++i)
        {
            for(int j = 0;j < n;++j)
            {
                cin>>B[i][j];
                if(i == j && B[i][j]) flag = true;
                if(j < i && B[i][j] != B[j][i]) flag = true;
            }
        }
        if((!flag) && solve(n)) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值