论文阅读
文章平均质量分 83
Scintilla_y
努力!大胆往前走!Talk is cheap!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SPD-DDPM阅读笔记
本文介绍了一种新型的条件对称正定(SPD)去噪扩散概率模型(C-SPD-DDPM),旨在解决在给定条件向量的情况下生成SPD矩阵的问题。该模型基于传统的去噪扩散概率模型(DDPM),并对其进行了扩展,使其能够处理SPD矩阵的对称性和正定性。文章提出了一种新的SPD U-Net网络结构,该结构通过双卷积块增强了模型的深度和拟合能力,同时整合了时间条件和条件向量,提高了模型对不同时刻数据分布的适应性。C-SPD-DDPM模型的核心贡献包括:此外,文章还探讨了如何利用里曼中心的最大似然估计来优化生成过程,以及如何原创 2025-04-21 23:30:39 · 495 阅读 · 0 评论 -
PD-DDPM阅读笔记
这篇文章的核心贡献是提出了一种改进的去噪扩散概率模型(DDPM),名为pre-segmentation diffusion sampling DDPM (PD-DDPM),专门用于加速医学图像分割任务。PD-DDPM的关键创新点在于引入了一个预分割步骤,该步骤利用一个独立训练的分割网络来生成初步的分割结果。然后,这些预分割结果被用来构建非高斯分布的噪声预测,并根据正向扩散规则进行扩散,生成近似的噪声样本xT′^\hat{x_T^′}xT′^。在逆向过程中,从xT′^\hat{x_T^′}xT′^原创 2025-04-21 23:29:57 · 752 阅读 · 0 评论 -
Diff-UNet阅读笔记
阅读时间:2024/08/26名字:Diff-UNet: A Diffusion Embedded Network for Volumetric Segmentation。原创 2025-03-15 20:23:16 · 1490 阅读 · 0 评论
分享