数论分块原理

数论分块模板题:\sum_{i=1}^{n} {\left \lfloor \frac{n}{i} \right \rfloor} ,采用数论分块可以优化到\sqrt{n}

为书写方便以下\left \lfloor \frac{n}{i} \right \rfloor都写做n/i

首先我们要知道这一点:存在一些连续的x1,x2...xk,有n/x1=n/x2=...=n/xk。比如100/34=100/35=100/36=...=100/50。对于这些连续出现的,我们只需要知道出现次数,然后只用计算其中一个数就可以了,比如:(n/x1)*(xk-x1+1)。

现在要找出n,x1和xk的关系。

下图用数轴描述了i和n/i的部分取值。其中

n/(i-b)=n/(i-b+1)=n/(i-b+2)=...=n/(i-1)=k+L;  

n/i=n/(i+1)=n/(i+2)=...=n/(i+a)           =k;

n/(i+a+1)=n/(i+a+2)=...n/(i+a+c)       =k-r;

由上图还可得出:

n-(i-1)<(k+L)*(i-1)<=n

n-i < k*i <= n

n-(i+a+1)<(k-r)*(i+a+1)<=n

(结合下图看会比较直观)

由于:n-i < k*i <= n

左右同时加上L*i得到:n-i+L*i < k*i+L*i <= n+L*i

合并同类项:n+(L-1)*i < (k+L)*i <= n+L*i

由于L>=1则:n< (k+L)*i

那么n/(k+L)<i

由于n-(i-1)<(k+L)*(i-1)<=n

那么n/(k+L)>=i-1

得:n/(k+L)=i-1

有了这个现在就好办了,结合上图我们就得出从i-b开始,到n/(k+L),这些数除以n向下取整的值都为k+L,而n/(i-b)=k+L。

最后得到从i-b开始,到n/(n/(i-b)),这些数除以n向下取整的值都为n/(i-b)。

同理应用于其它数段。

代码改日补上。

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值