Matrix Power Series POJ - 3233

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
 
 
 
 
题解:
Sk=A+A^2+A^3+...+A^k;
S(k-1)=A+A^2+A^3+...+A^(k-1);
则:Sk=A*S(k-1)+A;
结合矩阵快速幂求解
 
 
#include"stdio.h"
#include"string.h"
#include"cstdio"
#include"algorithm"
using namespace std;
typedef long long ll;
int n,mod;
struct Mat
{
	int m[65][65];
};
Mat multy(Mat X,Mat Y)
{
	Mat Z;
	memset(Z.m,0,sizeof(Z.m));
	for(int i=0;i<2*n;i++)
	{
		for(int j=0;j<2*n;j++)
		{
			if(X.m[i][j])
			{
				for(int k=0;k<2*n;k++)
				{
					Z.m[i][k]+=((X.m[i][j]*Y.m[j][k])%mod);
					Z.m[i][k]%=mod;
				}
			}
		}
	}
	return Z;
}
Mat pow_m(Mat A,int k)
{
	Mat B;
	memset(B.m,0,sizeof(B.m));
	for(int i=0;i<2*n;i++)
	B.m[i][i]=1;
	while(k)
	{
		if(k&1) B=multy(B,A);
		A=multy(A,A);
		k>>=1;
	}
	return B;
}
int main()
{
	int k;
	while(scanf("%d%d%d",&n,&k,&mod)!=EOF)
	{
		Mat A,B;	
		int i;
		memset(A.m,0,sizeof(A.m));
		memset(B.m,0,sizeof(B.m));
		for(i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			scanf("%d",&A.m[i][j]);
		}
		for(;i<2*n;i++)
		A.m[i-n][i]=1;
		for(i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			B.m[i][j]=A.m[i][j];
		}
		for(;i<2*n;i++)
		{
			for(int j=0;j<n;j++)
			B.m[i][j]=A.m[i-n][j];
		}
		for(i=n;i<2*n;i++)
		B.m[i][i]=1;
		Mat Q=pow_m(B,k-1);
		Mat R=multy(A,Q);
		for(i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			printf("%d%c",R.m[i][j],j==n-1?'\n':' ');
		}
	}	
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值