模板 Dijkstra+链式前向星+堆优化(非原创)

我们首先来看一下什么是前向星.

 

前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序,

并记录下以某个点为起点的所有边在数组中的起始位置和存储长度,那么前向星就构造好了.

 

用len[i]来记录所有以i为起点的边在数组中的存储长度.

用head[i]记录以i为边集在数组中的第一个存储位置.

 

那么对于下图:

我们输入边的顺序为:

 

1 2

2 3

3 4

1 3

4 1

1 5

4 5

 

那么排完序后就得到:

 

编号:     1      2      3      4      5      6      7

起点u:    1      1      1      2      3      4      4

终点v:    2      3      5      3      4      1      5

 

得到:

 

head[1] = 1    len[1] = 3

head[2] = 4    len[2] = 1

head[3] = 5    len[3] = 1

head[4] = 6    len[4] = 2

 

但是利用前向星会有排序操作,如果用快排时间至少为O(nlog(n))

 

 

如果用链式前向星,就可以避免排序.

 

我们建立边结构体为:

struct Edge
{
     int next;
     int to;
     int w;
};

其中edge[i].to表示第i条边的终点,edge[i].next表示与第i条边同起点的下一条边的存储位置,edge[i].w为边权值.

 

另外还有一个数组head[],它是用来表示以i为起点的第一条边存储的位置,实际上你会发现这里的第一条边存储的位置其实

在以i为起点的所有边的最后输入的那个编号.

 

head[]数组一般初始化为-1,对于加边的add函数是这样的:

void add(int u,int v,int w)
{
    edge[cnt].w = w;
    edge[cnt].to = v;
    edge[cnt].next = head[u];
    head[u] = cnt++;
}

初始化cnt = 0,这样,现在我们还是按照上面的图和输入来模拟一下:

 

 

edge[0].to = 2;     edge[0].next = -1;      head[1] = 0;

edge[1].to = 3;     edge[1].next = -1;      head[2] = 1;

edge[2].to = 4;     edge[2],next = -1;      head[3] = 2;

edge[3].to = 3;     edge[3].next = 0;       head[1] = 3;

edge[4].to = 1;     edge[4].next = -1;      head[4] = 4;

edge[5].to = 5;     edge[5].next = 3;       head[1] = 5;

edge[6].to = 5;     edge[6].next = 4;       head[4] = 6;

 

很明显,head[i]保存的是以i为起点的所有边中编号最大的那个,而把这个当作顶点i的第一条起始边的位置.

 

这样在遍历时是倒着遍历的,也就是说与输入顺序是相反的,不过这样不影响结果的正确性.

比如以上图为例,以节点1为起点的边有3条,它们的编号分别是0,3,5   而head[1] = 5

 

我们在遍历以u节点为起始位置的所有边的时候是这样的:

 

for(int i=head[u];~i;i=edge[i].next)

 

那么就是说先遍历编号为5的边,也就是head[1],然后就是edge[5].next,也就是编号3的边,然后继续edge[3].next,也

就是编号0的边,可以看出是逆序的.

模板代码1:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int inf = 0x3f3f3f3f;
const int M = 4444;
int d[M],head[M],vis[M];
struct nod{
    int nex,to,w;
}eg[M];
typedef pair<int,int> P;
int cnt=0;
inline void add(int u,int v,int w){
    eg[cnt].to=v;
    eg[cnt].w=w;
    eg[cnt].nex=head[u];
    head[u]=cnt++;
}
void dijkstra(int s){
    priority_queue<P,vector<P>,greater<P> >que;
    
    d[s]=0;
    que.push(P(0,s));
    while(!que.empty()){
        P p = que.top();
        que.pop();
        int v=p.second;
        if(d[v]<p.first) continue;
        for(int i=head[v];~i;i=eg[i].nex){
            nod e=eg[i];
            if(e.w+d[v]<d[e.to]){
                d[e.to]=e.w+d[v];
                que.push(P(d[e.to],e.to));
            }
        }
    }
}
int main(){
    int t,n;
    scanf("%d %d",&t,&n);
    memset(d,inf,sizeof(d));
    memset(head,-1,sizeof(head));
    for(int i=0;i<t;i++){
        int u,v,cost;
        scanf("%d %d %d",&u,&v,&cost);
        add(u,v,cost);
        add(v,u,cost);
    }
    dijkstra(1);
    printf("%d\n",d[n]);
    return 0;
}

模板代码2(优化):

#include<iostream>
#include<cstring>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
using namespace std;
const int MAX_V = 200010;
const int MAX_E = 2000010;
const int INF = 0x3f3f3f3f;
int V,E,cnt;
int heap[MAX_V],dis[MAX_V];

struct Edge{
    int to,next,cost;
}rng[MAX_E];
void add(int u,int v,int cost){
    rng[cnt].to = v;
    rng[cnt].next = heap[u];
    rng[cnt].cost = cost;
    heap[u] = cnt++;
}
struct Rule{
    bool operator()(int &a,int &b)const{
        return dis[a] > dis[b];
    }
};
inline int read()
{
    int X=0,w=1; char ch=0;
    while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
    return X*w;
}
void Dijkstra(int a_){
    memset(dis,INF,sizeof(dis));
    priority_queue<int,vector<int>,Rule > q;
    dis[a_] = 0;q.push(a_);
    
    while(!q.empty()){
        int u = q.top();q.pop();
        for(int k=heap[u];k != -1;k = rng[k].next){
            int &v = rng[k].to;
            if(dis[v] > dis[u] + rng[k].cost){
                dis[v] = dis[u] + rng[k].cost;
                q.push(v);
            }
        }
    }
}
int main(void){
    cnt = 0;
    memset(heap,-1,sizeof(heap));
    V = read(),E = read();
    int x,y,z;
    for(int i=1;i<=E;i++){
        x = read(),y = read(),z = read();
        add(x,y,z);
    }
    Dijkstra(1);
    if(dis[V] == INF){
        printf("-1\n");
    }
    else
        printf("%d\n",dis[V]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值