理解numpy中ndarray的内存布局和设计哲学

本文详细介绍了numpy的ndarray,包括它的设计哲学,如数据存储与解释方式的分离,以及内存布局,强调了数据的连续存储和元数据的重要性。ndarray的内存布局由数据缓冲区和元数据组成,元数据包含数据类型、维度、形状和步长等信息。此外,文章还讨论了副本和视图的概念,以及这样的设计如何提高效率和节省内存。最后,指出ndarray的设计是为矩阵运算优化,所有数据单元同类型,使得按秩访问高效并节省空间。
摘要由CSDN通过智能技术生成

博客:博客园 | CSDN | blog


本文的主要目的在于理解 numpy.ndarray的内存结构及其背后的设计哲学。

ndarray是什么

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type. The items can be indexed using for example N integers.

—— from https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.html

ndarray是numpy中的多维数组,数组中的元素具有相同的类型,且可以被索引

如下所示:

>>> import numpy as np
>>> a = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11]])
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> type(a)
<class 'numpy.ndarray'>
>>> a.dtype   
dtype('int32')
>>> a[1,2]
6
>>> a[:,1:3]
array([[ 1,  2],
       [ 5,  6],
       [ 9, 10]])

>>> a.ndim    
2
>>> a.shape   
(3, 4)        
>>> a
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值