本立2道生

怕什么真理无穷,进一寸有一寸的欢喜。

论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey

写在前面 paper:https://arxiv.org/abs/1809.02165 github:https://github.com/hoya012/deep_learning_object_detection,A paper list of object detection using d...

2019-02-14 18:19:17

阅读数 34

评论数 0

单变量微分、导数与链式法则

微分(Differential,differentiation, differential calculus),意味着求导数。 令y=f(x)y = f(x)y=f(x),即yyy是xxx的函数,xxx的变化将引起yyy的变化,xxx的变化量△x\triangle x△x导致yyy变化△y\tr...

2019-01-26 18:33:46

阅读数 37

评论数 0

Group Convolution分组卷积,以及Depthwise Convolution和Global Depthwise Convolution

博客:blog.shinelee.me | 博客园 | CSDN Group Convolution分组卷积,最早见于AlexNet,就是2012年Imagenet的冠军方法,Group Convolution被用来将切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下: 在介绍Gr...

2019-01-09 10:57:30

阅读数 80

评论数 3

VSCode Python开发环境配置

准备工作 anaconda安装,官网下载安装,笔者安装在"D:\Anaconda3" 安装好之后,查看环境变量path中是否有如下路径,没有的话添加进去 D:\Anaconda3 D:\Anaconda3\Scripts git安装,官网...

2019-01-07 17:14:09

阅读数 49

评论数 0

Win10+RTX2080深度学习环境搭建:tensorflow、mxnet、pytorch、caffe

文章目录准备工作设置conda国内镜像源conda 深度学习环境tensorflow、mxnet、pytorch安装tensorflowmxnetpytorchCaffe安装配置文件修改编译时常见错误参考 GPU为RTX2080,系统为更新到最新版本的Win10。 准备工作 安装VS2015,到...

2018-12-26 17:42:49

阅读数 185

评论数 2

真win10官方原版ISO下载方法

网上太多打着官方原版ISO旗号,下载下来捆绑了各种“流氓”软件,笔者深受其害。这篇文章将讲述如何获取真·官方原版ISO方法。

2018-12-24 20:27:20

阅读数 766

评论数 0

我的Windows装机必备软件与生产力工具

2018年12月21日,最近要装新电脑,借此将自己常用的工具总结一下。 系统工具 wox,软件快速启动工具,有翻译等插件 everything,本地文件文件夹快速检索工具 ditto,剪贴板增强工具,缓存剪切历史 Total Commander 飞扬时空版,文件管理软件,替代系统资源管理器,有众...

2018-12-21 18:19:15

阅读数 131

评论数 0

Caffe源码理解3:Layer基类与template method设计模式

博客:blog.shinelee.me | 博客园 | CSDN 文章目录写在前面参考 写在前面 参考 Blobs, Layers, and Nets: anatomy of a Caffe model

2018-12-19 16:53:43

阅读数 52

评论数 2

MTCNN算法与代码理解—人脸检测和人脸对齐联合学习

博客:blog.shinelee.me | 博客园 | CSDN 文章目录写在前面算法Pipeline详解如何训练损失函数训练数据准备多任务学习与在线困难样本挖掘预测及代码参考 写在前面 主页:https://kpzhang93.github.io/MTCNN_face_detection_ali...

2018-12-13 18:12:19

阅读数 89

评论数 0

直观理解神经网络最后一层全连接+Softmax

深度学习的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 通常,将网络最后一个全连接层的输入,即上图中的x,视为网络学到的特征。\mathrm{x},视为网络学到的特征。x,视为网络学到的特征。网络的最终输出为每个类别的概率,类别总数为KKK...

2018-12-06 17:32:12

阅读数 483

评论数 0

人脸检测中,如何构建输入图像金字塔

博客:blog.shinelee.me | 博客园 | CSDN 文章目录写在前面人脸检测中的图像金字塔代码实现MTCNNSeetaface总结参考 写在前面 在文章《特征,特征不变性,尺度空间与图像金字塔》中我们初步谈到了图像金字塔,在这篇文章中将介绍如何构架人脸检测任务中的输入图像金子塔。 人...

2018-12-04 18:57:29

阅读数 42

评论数 0

Caffe源码理解2:SyncedMemory CPU和GPU间的数据同步

博客:blog.shinelee.me | 博客园 | CSDN 文章目录写在前面成员变量的含义及作用构造与析构内存同步管理参考 写在前面 在Caffe源码理解1中介绍了Blob类,其中的数据成员有 shared_ptr<SyncedMemor...

2018-12-01 16:50:49

阅读数 143

评论数 0

人脸识别相关开源项目汇总

博客:blog.shinelee.me | 博客园 | CSDN 文章目录全任务人脸检测人脸识别参考 人脸识别流程包括人脸检测、人脸对齐、人脸识别等子任务,这里优先总结功能相对齐全的开源项目,再总结完成单个子任务的开源项目。本文主要关注方法较流行且提供源码的开源项目,忽略了仅提供SDK的。 全任务...

2018-11-30 18:52:35

阅读数 137

评论数 0

重新思考面向过程与面向对象

博客:blog.shinelee.me | 博客园 | CSDN 面向过程与面向对象的思考方式 面向过程和面向对象的差异主要体现在思考方式上,面对同样一个任务, 面向过程的思考方式,首先想的是一步步该怎么做, 对任务进行分解,先干什么后干什么,划分成不同阶段的子任务 对每个阶段的子任务进一步分解...

2018-11-29 18:28:59

阅读数 43

评论数 0

特征,特征不变性,尺度空间与图像金字塔

特征 在计算机视觉领域,特征是为了完成某一特定任务需要的相关信息。比如,人脸检测中,我们需要在图像中提取特征来判断哪些区域是人脸、哪些区域不是人脸,人脸验证中,我们需要在两个人脸区域分别提取特征,来判断他们是不是同一个人,如下图所示,深度神经网络最终得到一个128维的特征用于识别等任务,图片来自O...

2018-11-29 12:01:51

阅读数 119

评论数 0

Caffe源码理解1:Blob存储结构与设计

Blob作用 据Caffe官方描述: A Blob is a wrapper over the actual data being processed and passed along by Caffe, and also under the hood provides synchronizat...

2018-11-23 18:34:07

阅读数 75

评论数 0

论文学习-系统评估卷积神经网络各项超参数设计的影响-Systematic evaluation of CNN advances on the ImageNet

写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:https://arxiv.org/abs/1606.02228 github地址:https://github.com/ducha-aiki/caffenet-ben...

2018-11-10 11:23:17

阅读数 68

评论数 0

卷积神经网络之卷积计算、作用与思想

博客:blog.shinelee.me | 博客园 | CSDN 卷积运算与相关运算 在计算机视觉领域,卷积核、滤波器通常为较小尺寸的矩阵,比如3×33\times33×3、5×55\times55×5等,数字图像是相对较大尺寸的2维(多维)矩阵(张量),图像卷积运算与相关运算的关系如下图所示(图...

2018-11-08 21:45:31

阅读数 67

评论数 0

OpenCV各版本差异与演化,从1.x到4.0

博客:blog.shinelee.me | 博客园 | CSDN 写在前面 最近因项目需要,得把OpenCV捡起来,登录OpenCV官网,竟然发现release了4.0.0-beata版本,所以借此机会,查阅资料,了解下OpenCV各版本的差异及其演化过程,形成了以下几点认识: 新版本的产生是为...

2018-10-31 17:38:53

阅读数 50

评论数 0

高斯滤波对图像方差有什么影响

均值与方差 首先回忆下均值和方差的定义,若存在nnn个数为x1,x2,…,xnx_1, x_2, \dots, x_nx1​,x2​,…,xn​,则均值μ\muμ为: μ=x1+x2+⋯+xnn\mu = \frac{x_1+x_2+\dots+x_n}{n}μ=nx1​+x2​+⋯+xn​​ 均...

2018-09-27 17:42:36

阅读数 179

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭