机器学习算法
文章平均质量分 74
主要写一些经常用到的机器学习的算法
First_____
这个作者很懒,什么都没留下…
展开
-
2.机器学习基本数学基础
机器学习数学基础原创 2022-09-11 19:20:45 · 255 阅读 · 0 评论 -
1.机器学习概念及相关术语解释
机器学习基础概念和相关术语,机器学习的分类方式(监督学习丶无监督学习丶半监督学习丶强化学习)原创 2022-09-07 16:13:39 · 1191 阅读 · 0 评论 -
一丶机器学习基础知识
机器学习基础知识和一些算法概念转载 2022-08-27 14:13:01 · 2047 阅读 · 0 评论 -
常见的几种推荐系统算法
引入: 随着互联网时代的发展, 数据量的产生越来越来, 如何能够利用起来呢? 我们先来说说最常用的推荐系统几种算法,并且加以区分一丶基于统计学的推荐概述:基于统计学的推荐系统,其实就是对大量的历史数据, 根据自己的业务需求,来获取到想要的信息例如:热门商品的排行, 最近的热门商品排行, 对商品的评分求取平均值得到最优质的商品等等,这些都是对统计学推荐的应用二丶基于协同过滤的推荐概述:基于协同过滤的推荐又分为:基于用户的协同过滤的推荐, 基于物品的协同过滤的推荐,基于(隐语义)模型原创 2021-11-10 20:32:27 · 3928 阅读 · 0 评论 -
二丶线性回归和logistic(逻辑斯蒂)回归
说明:线性回归和Logistic回归他们两个解决的并不是一类问题,名字的话,的确很容易让人误导,这两者的区别:线性回归是用来解决回归问题,而Logistic回归是用来解决二分类问题的,一个是回归,一个是分类, 这两大类型也是机器学习主要解决的,回归问题可以理解为一群连续输出的点,找到一条线或者曲线来预测薪资,房价;分类问题则是输出为有限的离散数据,比如将医疗数据分为是否患上了肿瘤,由此可见两者完全是用来解决不同类型问题的,绝对不能混到一块来说。...转载 2022-08-27 12:10:15 · 3224 阅读 · 0 评论 -
推荐系统分类
一丶监督学习概述:通过已有的数据结果,分析训练出一个预测模型,使模型能够对任意给定的输入,对其相应的输出做出一个好的预测。 即: 根据训练集训练出模型, 再根据测试集对结果预测.1.回归模型1.1线性回归概念: 一般用于求一个变量随着另一个变量的变化而变化的情况多元线性回归:现实生活中, 一个变量所受的影响往往不只是会受另一种的变化,而是会受到多种情况的影响,这就需要使用多元线性回归求解的两种方式: 最小二乘法和梯度下降法2.分类模型2.1 k近邻核心思路:在训练集中数据和原创 2021-10-16 10:53:30 · 144 阅读 · 0 评论