- 博客(15)
- 收藏
- 关注
原创 人工智能可能是创业最后的末班车
如今互联网的高速发展的时代正在悄然过去,过去10年,互联网以惊人的速度重塑着社会,重构了你我的生活方式。互联网的高速发展,主营业务的你挣我夺,带来了很多需求的“空隙”,这些空隙是互联网大厂瞧不上的,是业务快速发展必然带来的。我们处在最好的时代,也是最坏的时代,市场的红利已经被大厂瓜分殆尽,但新技术崛起又给了普通人新的机会。这其中,人工智能是连接三者的核心,也是最能产生价值的领域。而如果以这些没有很好满足的需求为起点,加之以创新的方法、人工智能技术带给用户更好的体验,则会成为一个初创企业很好的立足点。
2023-02-04 17:07:10 172
原创 真正的AI需要实际的需求
如果你是一个怀揣梦想的AI技术人,不妨来AI模型市场(http://aimodelmarket.cn)试试身手,不仅是对自身综合能力的锻炼,如果解决了客户问题,还能赚一笔小的外快,何乐而不为呢?客户的需求是一个非常专业的细分领域,但需求本身却并不一定复杂。我们在研究AI问题时,总是喜欢将问题分类,比如视觉、自然语言等类型,然后在已有的数据集中,设计模型结构,一点点调优,最后追求那一点点的模型指标上的提升。解决这些需求,都需要专业技能+行业知识的整合,但也只有这样,才能真正解决客户的问题,创造真正的价值。
2023-01-28 10:56:22 254
原创 ChatGPT中文版重装上阵
ChatGPT是一款非常强大的NLP模型,可以帮助开发者构建会话式聊天机器人,它可以更加准确地理解用户的意图,并且可以自动生成合理的回复。总之,AI模型市场联手OpenAI推出的新版ChatGPT,可以帮助开发者构建更加智能的聊天机器人,更好地满足用户的需求。它可以更加准确地理解用户的意图,并且可以自动生成准确的回复,为聊天机器人的开发提供了更多的可能性。它可以根据用户的输入,自动生成准确的回复,并且可以根据用户的语境,更加准确地理解用户的意图。它还可以自动生成语义相关的回复,从而更好地满足用户的需求。
2023-01-16 14:12:39 12678
原创 AI将产生创富的第5次浪潮
无论是推荐系统、翻译,还是自动驾驶、智能营销,甚至是最近比较火的AI创作(包括AI作画stable diffusion、AI生成对话ChatGPT)等,都是在大数据、大算力加持下的AI模型算法的应用。在这第5次浪潮的前夕,拥有AI研发能力无疑是稀缺的,未来各个产业对AI的需求量将呈爆发式增长,AI+将重塑各个行业是确定的趋势,而人才和像上面基础设施的准备,将是这波浪潮中决定的力量。第四次创富则是14年互联网经济的崛起,腾讯、阿里、百度等公司的崛起,不但改变了中国的产业格局,也改变了人们的生活习惯。
2023-01-04 11:21:56 178
原创 语音生成领域模型又填一名猛将
AI模型市场最近上线了一款新的TTS模型,我们通过和作者的沟通,发现作者就是使用了上述的模型经过,在经过10几个小时的大数据量训练,成功孵化出一款优秀的TTS模型。人类对于语句的朗读是有抑扬顿挫的,有时又要结合句子含义,有感情的变化。尤其是这两年有声书非常火热,有很多前几年积累的网络小说,经过TTS模型后,就变成了有声书,然后在喜马拉雅或蜻蜓FM等类似频道就可以上线售卖。有需要的小伙伴欢迎来AI模型市场(aimodelmarket.cn)试用,快来围观这款语音生成领域的猛将是如何玩转TTS的~
2022-12-28 15:00:01 163
原创 ChatGPT中文版杀疯了,已登录AI模型市场
ChatGPT是一个由Open AI 刚刚推出的AI对话模型。它区别于其他聊天机器人的能力在于,除了具体的知识性问题,还可以回答开放式问题,并以对话方式与你交互。比如,你可以和它聊聊人生哲学,探讨一下生命的意义,或是找它寻求追求真爱的建议。在各种场景的对话中,它都可以生成流畅的内容,从创作指定风格的诗歌、小说和电视脚本,再到回答琐事问题以及编写和调试代码行。ChatGPT有以下三个重要的突破:首先,ChatGPT可以理解较为复杂的语句内容,比如有多层语法嵌套的句子。其次,ChatGPT拥有一定联系上下文理解
2022-12-08 07:32:49 35252
原创 2022年10大AI开放平台
16年以来,随着AI爆发式发展,国内的AI开放平台呈现百花齐放式的局面。一系列优秀且有特色的AI应用出现。目前国内比较大且通用的AI开放平台有哪些呢?
2022-11-19 12:01:45 790
原创 从AI生成视频看人工智能未来发展趋势
比如像国外的hugging face;一个新的AI模型,从理论研究、到实验再到论文产出,会经历一个比较长的周期,而从论文到代码实现、到工程化、部署到线上则需要一个更长的周期。AI模型市场以容器的方式管理模型,以API接口的方式对外提供,客户可以用最简单的http调用的方式,调用容器中的模型,从而快速获得AI模型能力,帮助企业快速将AI应用落地。从生成时长看,目前还不能生成一段很长的视频,只能生成时间很短的一段。但另一方面,工业界却对此反应冷淡,AI生成图片的应用还没有大范围铺开,AI生成视频就更是如此了。
2022-10-29 21:54:11 527
原创 推荐一个人工智能应用落地的网站
对于中小企业来讲,养一支IT队伍已经是一笔不小的费用了,对于动辄几十万年薪的算法工程师来讲,对于大型企业来说可能没什么,但对于刚起步的中小企业来讲,实在招不起、也养不起。在模型市场,以容器镜像形式发布模型,只将要发布的模型,打包成docker镜像,发布到公网可以访问到的镜像仓库中,再在AI模型市场中新建一个模型并配置就完成了。使用API的最大好处就是,企业可以在不改变已有API的情况下,持续获得更佳的模型效果,获得最新的AI模型能力。模型市场按量计费,如果模型被调用,将按指定的金币付给作者。
2022-10-07 16:47:10 798
原创 从特斯拉人形机器人亮相看AI人工智能模型落地面临的两个难题
最后,对于建设的团队成本,AI模型市场都帮企业省下了这笔费用。这样,一方面保护了模型提供者可以及时得到收益,另一方面,保护企业,一旦发现模型有不适合的地方,可以及时止损,同时也不用维护一支庞大的AI数据科学家团队的支出。首先,对于企业的不确定性,AI模型市场采用了API的接入形式,HTTP-API是轻量的系统交互接口,是应对变化的最好选择。在AI人工智能模型落地的过程中,企业和AI能力提供者还需要很多的探索,不断减少二者之间的鸿沟,才能让企业及时获得AI能力的红利,也帮助科研工作者,获得及时的反馈和收益。
2022-10-01 11:47:10 467
原创 探索AI技术应用场景
但AI算法研究人员,更多精力是集中在算法研究本身:更好的结构、更强的提取器、更优的参数…算法的落地需要工程的帮助,产业的应用也需要工程化的引导,只有帮助二者之间架起桥梁,才能真正在探索AI方面事半功倍。由计算机视觉加持的工业分拣、安防、自动驾驶等领域,越来越重要,成为不可或缺的一环。目前AI行业看起来又是比较沉寂,但其实我们已经又跨上了一个台阶,只不过在这台阶之上,有太多需要探索和熟悉的内容。而近两年,物联网领域在得到AI的加持后,进化成为AIot,又是一个火热的研究领域。
2022-09-24 15:41:37 789
原创 学人工智能难吗?怎么用它赚到钱?
1、 首先,机器学习理论基础,涉及的算法模型非常多,比如LR、FM、SVM等。除此之外,作为副业也是可以有不少输入的,比如像AI模型市场(aimodelmarket.cn)这种网站就是把算法工程师做的模型,包装成产品卖个企业,让算法工程师获得相应的报酬。因此,目前研究人工智能的人当中,最多的就是上面这三种专业的人。学习人工智能的学习曲线是比较陡峭的,人工智能是一门交叉学科,涉及数学、计算机、统计学等学科知识。总之,投入越多,收益也就越大,学习人工智能难度不可谓不小,但主业+副业整体收入也是不菲的。
2022-09-10 09:35:58 427
原创 中小企业集成AI人工智能的窘境
目前像AI模型市场(aimodelmarket.cn)就是这样的一类网站,一方面帮助AI学者、专家对AI模型进行工程化,另一方面,帮助企业寻找合适的AI产品,按量租售。2、 其次,就算能招到,那成本也是非常高的。对于中小企业来讲,养一支IT队伍已经是一笔不小的费用了,对于动辄几十万年薪的算法工程师来讲,对于大型企业来说可能没什么,但对于刚起步的中小企业来讲,实在招不起、也养不起。有的,对于目前阶段由大企业把持大量AI工程师的情况,可能长期看来还会继续,但这其中的AI工程师,其实还是有一些余力的。
2022-09-03 12:02:12 498
原创 AI模型集成到业务系统的方式演化
在一些早期系统中,模型比较简单,这时,真正在线上系统部署模型时,模型只是以算法的形式出现,模型参数作为算法所需要的“数据”,存储在内存或分布式缓存(如Redis)中。这种方式,模型以分布式API服务的形式,集成到系统中(如tensorflow-serving),模型的升级演化,不会影响业务系统的使用,非常方便。展望未来,我们希望随着像AI模型市场(aimodelmarket.cn)这样的服务的发展,越来越多的模型服务被开发出来,并实现服务商和业务方的分离,将极大的提高生产力。这几年的集成方式又有何变化呢?.
2022-08-27 16:58:10 604
原创 人工智能应用落地的两难
一方面是消息闭塞,人工智能从业者无法准确高效的找到这些企业需求,另一方面企业也无法信任单个开发者的成果,在没有比较的情况下,就投入资金进行科研转化。无论哪种方式,都无法获得实际的工业应用结果数据,也无法获得响应的科研报酬。一方面是各高校研究机构,层出不穷的模型和算法,不断刷新着各项指标,另一方面,却迟迟不见这些最新的科研成果转化落地。)采用的是容器的方式,将算法工程师的最新模型打包进容器,即方便部署,又满足了企业扩展性的需求。)这样的平台,就是通过API合作的方式,建立AI算法模型和企业需求之间的桥梁。
2022-08-20 15:26:00 952
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人