1. 什么是递归
递归是学习C语言函数绕不开的话题,那什么是递归呢?
递归其实是一种解决问题的方法,在C语言中,递归就是函数自己调用自己。
#include <stdio.h>
int main()
{
printf("hehe\n");
main();//main函数中又调用了main函数
return 0;
}
上述就是一个简单的递归程序,只不过上面的递归只是为了演示递归的基本形式,不是为了解决问
题,代码最终也会陷入死递归,导致栈溢出(Stack overflow)。
2. 递归的思想
把一个大型复杂问题层层转化为一个与原问题相似,但规模较小的子问题来求解;直到子问题不能再
被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。
递归中的递就是递推的意思,归就是回归的意思,接下来慢慢来体会。
3. 递归的限制条件
递归在书写的时候,有2个必要条件:
- 递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。
- 每次递归调用之后越来越接近这个限制条件。
在下面的例子中,我们逐步体会这2个限制条件。
4. 递归的举例
4.1 求n的阶乘
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。
自然数n的阶乘写作n!。
题目:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。
4.2 分析和代码实现
我们知道n的阶乘的公式: n! = n ∗ (n − 1)!
举例:
5! = 5*4*3*2*1
4! = 4*3*2*1
所以:5! = 5*4!
这样的思路就是把一个较大的问题,转换为一个与原问题相似,但规模较小的问题来求解的。
当n==0 的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算。
n的阶乘的递归公式如下:
那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶
乘,函数如下:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
测试:
#include <stdio.h>
int Fact(int n)
{
if (n == 0)
return 1;
else
return n * Fact(n - 1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d\n", ret);
return 0;
}
运行结果(这里不考虑n太大的情况,n太大存在溢出):
4.3 画图推演
5. 递归与迭代
递归是一种很好的编程技巧,但是和很多技巧一样,也是可能被误用的,就像举例1一样,看到推导的
公式,很容易就被写成递归的形式:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
Fact函数是可以产生正确的结果,但是在递归函数调用的过程中涉及一些运行时的开销。
在C语言中每一次函数调用,都需要为本次函数调用在内存的栈区,申请一块内存空间来保存函数调
用期间的各种局部变量的值,这块空间被称为运行时堆栈,或者函数栈帧。
函数不返回,函数对应的栈帧空间就一直占用,所以如果函数调用中存在递归调用的话,每一次递归
函数调用都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采用函数递归的方式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢
出(stack overflow)的问题。
所以如果不想使用递归,就得想其他的办法,通常就是迭代的方式(通常就是循环的方式)。
比如:计算 n 的阶乘,也是可以产生1~n的数字累计乘在一起的。
int Fact(int n)
{
int i = 0;
int ret = 1;
for(i=1; i<=n; i++)
{
ret *= i;
}
return ret;
}
上述代码是能够完成任务,并且效率是比递归的方式更好的。
事实上,我们看到的许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更加清晰,
但是这些问题的迭代实现往往比递归实现效率更高。
当一个问题非常复杂,难以使用迭代的方式实现时,此时递归实现的简洁性便可以补偿它所带来的运
行时开销。