HDU 1013 Digital Roots

Digital Roots

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 39049    Accepted Submission(s): 11989


Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
 

Input
The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
 

Output
For each integer in the input, output its digital root on a separate line of the output.
 

Sample Input
  
  
24 39 0
 

Sample Output
  
  
6 3
 

Source


注意:输入的是大数,应用字符串处理

//最简洁的代码
//说明:
//1、能够处理很长位数的整数而无需使用数组。
//2、速度极致,尽量采用高效的getchar,不采用循环反复缩短位数的方法,只是一个对9求余,理论依据…………自己想啊!
//3、因为一接收到0就认为输入结束,因此这个代码能够AC,说明不存在以0开头的多位整数。
//为什么是对9取余呢?
//1.一位数模9是它本身(9除外);整十数模9是它十位的数字(90除外);整百数摸9是它百位的数字(900除外)......
//2.对于一个一般的数,可以分拆成几个10的幂的和;一般的数模9的结果,实质就是题目所描述的"数字根"(9的倍数除外).
//3.反复提到9的倍数除外,那这个除外的结果是什么?想一下就清楚.所以楼主先--a再%9最后+1就是在处理这种情况
//4.数字后面跟u后缀代表无符号整数,至于9啊48啊还要加这个,那是楼主在炫耀他的代码能力,大家可无视之

#include<stdio.h>
int main()
{
    int a,c;
    for(;scanf("%1d",&a),a>0;printf("%d\n",--a%9u+1))
        while((c=getchar())-48u<10)
            a+=c-'0';
    return 0;
}





#include<iostream>
#include<string>
using namespace std;
int main ()
{
	string s;
	while(cin >> s , s != "0")
	{
		int temp = 0;
		for(int i = 0; i < s.length(); i++)
		{
			temp += s[i] - '0';
		}

	
		int n = temp;
		while(n >= 10)
		{
			temp = 0;
			while(n > 0)
			{
				temp += n % 10;
				n = n / 10;
			}
			n = temp;
		}
		printf("%d\n",n);
	}
	return 0;
}

#include<stdio.h>
int main ()
{
	char c;
	while(scanf("%c",&c) && c != '0')
	{
		int temp = 0;
		
		while(c != '\n')
		{
			temp += c - '0';
			scanf("%c",&c);
		}

		int n = temp;
		while(n >= 10)
		{
			temp = 0;
			while(n > 0)
			{
				temp += n % 10;
				n = n / 10;
			}
			n = temp;
		}
		printf("%d\n",n);
	}
	return 0;
}





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值