字符串匹配是计算机的基本任务之一。
KMP算法:利用匹配失败得到的信息,来最大限度的移动模式串,以此来减少比较次数提高性能。
相关的名词:
搜索词是那个长的词
模式串是那个短的词
思路:
如果已经匹配的长度是0,直接将搜索词后移一位。
如果已经匹配的长度是1,如果此时不匹配了,直接将搜索词后移一位。
如果已经匹配的长度大于1,如果此时不匹配了,直接将搜索词后移已匹配的字符数 - k位。
k的值等于"已经匹配值"的"前缀"和"后缀"的最长的共有元素的长度。
其中搜索词就是要找的那个词,被包含的那个词
next数组:
KMP能提高性能原因是减少了比较次数,也就是知道k
而k从只和j有关,这就意味着移动的次数只和模式串有关,和目标串无关
简单来说,就是我们得到模式串后就能立马知道移动的次数,这就是next数组。里面储存的就是k值。
next数组的计算:
这里是用被包含的较短字符串(模式串),自己与自己匹配,求得next数组。next数组中储存的是这个字符串前缀和后缀中相同字符串的最长长度。
next[i]储存的是string中前i+1位字符串前缀和后缀的最长长度。如abadefg,next[2]存的是aba这个字符串前缀和后缀的最长长度。
next数组的计算主要跟模式串有关,与文本串并没有关系,因为,模式串前后公共最长子序列。这样才会让我们跳过大量的重复计算 next数组的主要实现方法有很多,就是要找到前缀后缀最长公共子序列的长度 比如:
ababa:
模式串的各个子串: 前缀: 后缀: 最大公共元素长度
a 0
ab a b 0
aba a ab a ba 1
abab a ab aba b ab bab 2
ababa a ab aba abab a ba aba baba 3
如上图,next数组中的元素就是 0 0 1 2 3
Next数组的理解
https://blog.csdn.net/buppt/article/details/78531384
时间复杂度:O(m+n)
m和n分别表示str1和str2的长度。
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?
许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。
这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。
1.
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.
因为B与A不匹配,搜索词再往后移。
3.
就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.
接着比较字符串和搜索词的下一个字符,还是相同。
5.
直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.
因为空格与A不匹配,继续后移一位。
12.
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
/**
* 对 next[i] = next[i - 1] + 1的解释
* next[4]表示前长度为4的字符串的最大公共前后缀.
* 此时如果str[next[4]]与str[5]相等,就可知道next[5]=next[4]+1。相等就是公共前后缀的长度再加一
* a b c d a b
* next[4]=1 就是b
*/
public class KMP3 {
public int[] getNext(String str){
int i = 0;
int[] next = new int[str.length()];
next[0] = 0;
for (i = 1; i < str.length(); i++) {
if (str.charAt(i) == str.charAt(next[i - 1])) {
next[i] = next[i - 1] + 1;
} else {
next[i] = 0;
}
}
return next;
}
public String matchResult(String shortStr, String longStr, int[] next){
int i = 0;
int j = 0;
String result = "unmatch";
while (i<longStr.length() && j<shortStr.length()){
if (longStr.charAt(i) == shortStr.charAt(j)){
i ++;
j ++;
}else {
if (j == 0) {//长的那个往后移动一位,短的那个不需要动
i++;
}else {
int m = j - next[j-1];//需回溯的位数,,包含上面的j=1的情况,即已匹配的字符数 - 对应的部分匹配值
j = j - m;//设置下一次的起始坐标
}
}
}
if (j == shortStr.length()){
result = "match";
}
return result;
}
public static void main(String[] args) {
KMP3 kmp3 = new KMP3();
String a = "aba";
String b = "ssdfgasdbababa";
int[] next = kmp3.getNext(a);
String res = kmp3.matchResult(a, b,next);
System.out.println("the result is:" + res);
}
}
http://kb.cnblogs.com/page/176818/
https://blog.csdn.net/christ1750/article/details/51259425