一、安装anaconda
点击anaconda网址进行下载,或者进入清华镜像下载所需要的版本,速度很快,且版本齐全。
二、进入cmd查看是否安装好anaconda
1.在命令行输入‘python’命令查看python安装的版本之类的信息。
2.安装基于不同anaconda版本的TensorFlow,在命令行(不是接续上面的python交互环境下,直接在命令行输入)输入‘conda info --envs’检查conda环境。
三、建立基于python3.6的TensorFlow环境
1.打开Anaconda Prompt, 看一下都有哪些版本可以安装‘conda search --full-name python’
输入以下命令行,使用清华的镜像库或者中科大的镜像库(有的博客显示清华的库无法安装scrapy库),以后从Anaconda启动器下载别的Python包都很快。(下面二选一)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
2.创建TensorFlow环境‘conda create --name tensorflow python=3.6’,注意:3.6也可换为2.7/3.5,看你想要tensorflow在哪个版本下面使用了,推荐使用新版,3.7了已经)
3.运行 开始菜单—>Anaconda3—>Anaconda Navigator
,点击左侧的Environments
,可以看到tensorflow
的环境已经创建好了
使用TensorFlow打开终端,或者在Anaconda Prompt
中启动tensorflow
环境:
activate tensorflow
4.在基于python3.6环境中安装tensorflow和keras,也就是pip一下,就跟‘pip install numpy’一样,具体命令如‘pip install tensorflow-gpu’和‘pip install keras’
安装cpu版本的TensorFlow
pip install --upgrade --ignore-installed tensorflow
5.当不使用TensorFlow时,可以通过deactivate
来关闭TensorFlow环境
6.测试cpu版本的TensorFlow
重新打开Anaconda Prompt
—>activate tensorflow
—>python
来启动tensorflow,并进入python环境
#TensorFlow使用图(Graph)来表示计算任务;并使用会话(Session)来执行图,通过Session.close()来关闭会话(这是一种显式关闭会话的方式)。会话方式有显式和隐式会话之分。
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!') #初始化一个TensorFlow的常量
sess = tf.Session() #启动一个会话
print(sess.run(hello))
四、问题汇总
当我们用Anaconda自带的iPython和Spyder以及jupyter notebook中输入import tensorflow as tf
的时候会失败,显示如下No module named 'tensorflow‘
,原因是我们没有在TensorFlow的环境下打开它们。
如果想使用jupyter notebook之类的,进入Anaconda-Environment-tensorflow下,找Not installed下面的工具包,可以安装pandas,ipython等等。但是最好不要安装numpy,因为tensorflow好像自带了,我更新了下numpy报错,贼尴尬。
上面的转载+再加工。适用于win10+cpu版本的tensorflow。