洛谷 P1853【投资的最大效益】

原题链接

思路:

  • 不难看出是完全背包类问题,只是要明确一点,“花钱”买债券所花的钱并没有真正的花出去,关键就在于随时都可以卖出任何所持有的债券。那么,实际上我们可以认为每一年都先把所有持有的债券变卖套现,然后拿着全部的现金重新购买债券(重新打背包),寻找能够获得的最多的金钱。
  • 明白了这一点,就可以写出最简单的一版答案。dp【】记录 j 金钱能够获得的最多的本金+利润。注意答案是最后能到达的最大背包容量。

代码+讲解:

一:

  • 状态转移方程:
while(m--){
        for(int i=1;i<=n;i++){
            for(int j=w[i];j<=W;j++){
                dp[j] = max(dp[j] , dp[j-w[i]] + w[i] + v[i]);
            }
        }
        W = dp[W];
}
  • 完整代码1(无优化,记录本金加利息:4099ms,39956KB)
//4099ms, 39956KB 


#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int maxn = 15;
const int maxw = 10000005;

int w[maxn],v[maxn];
int dp[maxw];

int main(){
    int W,m,n;
    cin>>W>>m>>n;//m years
    for(int i=1;i<=maxw;i++)
        dp[i] = i;
    for(int i=1;i<=n;i++)
        cin>>w[i]>>v[i];
    while(m--){
        for(int i=1;i<=n;i++){
            for(int j=w[i];j<=W;j++){
                dp[j] = max(dp[j] , dp[j-w[i]] + w[i] + v[i]);
            }
        }
        W = dp[W];
    }
    cout<<W<<endl;
    return 0;
}
  • 核心:

    因为 dp[j] 表示花 j 金钱能够获得的本金+最大利润,所以初始化条件有些特殊。
for(int i=1;i<=maxw;i++)
        dp[i] = i;

二:

  • 状态转移方程:
    在这版代码中,由于 dp[j] 仅代表所获利润,因此每次更新的 W 也只做循环边界使用。
while(m--){
        for(int i=1;i<=n;i++){
            for(int j=w[i];j<=W;j++){
                dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
            }
        }
        W += dp[W];
}
  • 完整代码2(只记录利息,略微简化计算:3508ms,39864KB)
//3508ms, 39864KB 


#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int maxn = 15;
const int maxw = 10000005;

int w[maxn],v[maxn];
int dp[maxw];

int main(){
    int W,m,n;
    cin>>W>>m>>n;//m years
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n;i++)
        cin>>w[i]>>v[i];
    while(m--){
        for(int i=1;i<=n;i++){
            for(int j=w[i];j<=W;j++){
                dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
            }
        }
        W += dp[W];
    }
    cout<<W<<endl;
    return 0;
}

三:

  • 状态转移方程:
    因为债券售价千元起步,所以当我们拥有 j 金钱时,实际能够起作用的只有 j/1000*1000 这么多。故使用 dp[j] 记录当我们拥有的金钱在 [ j,j+1000 ) 区间时,能够获得的最大利润。其实质就是减少了打表时多达几千次的冗余操作。
while(m--){
        for(int i=1;i<=n;i++){
            for(int j=w[i];j<=W/1000*1000;j+=1000){
                dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
            }
        }
        W += dp[W/1000*1000];
}
  • 完整代码3(减少打表次数:268ms,39944KB)
//268ms, 39944KB 


#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int maxn = 15;
const int maxw = 10000005;

int w[maxn],v[maxn];
int dp[maxw];

int main(){
    int W,m,n;
    cin>>W>>m>>n;//m years
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n;i++)
        cin>>w[i]>>v[i];
    while(m--){
        for(int i=1;i<=n;i++){
            for(int j=w[i];j<=W/1000*1000;j+=1000){
                dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
            }
        }
        W += dp[W/1000*1000];
    }
    cout<<W<<endl;
    return 0;
}

四:

  • 状态转移方程:
    既然我们知道只需要打整千钱数的背包,何不删去无用空间的背包,减少空间复杂度。我们可以使用 dp[j] 表示钱数仅大于 j*1000 时所能获得的最大利润。
while(m--){
	for(int i=1;i<=n;i++){
		for(int j=w[i];j<=W/1000;j++){
			//int t = j + dp[j]/1000;
			dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
		}
	}
	W += dp[W/1000];
}
  • 注意代码中的注释行,这里我陷入了动态规划问题初学者常触的误区,是对动态规划算法的时间性还不够敏感所致。这里写出为什么算法中没有 t 的参与。首先, dp[j] 代表在前一年结束后,j 本金(前一年的本金)所能获得的最大利润。其次,在完全背包的循环条件下,dp[ j - w[i] ] 代表今年结束后,使用 j 本金(今年的本金)所能获得的最大利润。若将 dp[ j - w[i] ] 改成 dp[ t - w[i] ],显然是不对的,因为 t 实际上是默认完全执行上一年的方案,这不符合动态规划思想。
  • 完整代码4(时空复杂度均得到优化:35ms,1052KB)
//35ms, 1052KB 


#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int maxn = 15;
const int maxw = 10005;

int w[maxn],v[maxn];
int dp[maxw];

int main(){
	int W,m,n;
	cin>>W>>m>>n;//m years
	memset(dp,0,sizeof(dp));
	for(int i=1;i<=n;i++){
		cin>>w[i]>>v[i];
		w[i]/=1000;
	}
	while(m--){
		for(int i=1;i<=n;i++){
			for(int j=w[i];j<=W/1000;j++){
				//int t = j + dp[j]/1000;
				dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
			}
		}
		W += dp[W/1000];
	}
	cout<<W<<endl;
	return 0;
}
洛谷 P1681 最大正方形II 是一个动态规划问题,要求给定一个由 '0' 和 '1' 组成的矩阵,找出其中最大的正方形,并输出其边长。 以下是一个 C++ 编写的解答示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maximalSquare(vector<vector<char>>& matrix) { int rows = matrix.size(); if (rows == 0) return 0; int cols = matrix[0].size(); vector<vector<int>> dp(rows + 1, vector<int>(cols + 1, 0)); int maxSide = 0; for (int i = 1; i <= rows; i++) { for (int j = 1; j <= cols; j++) { if (matrix[i-1][j-1] == '1') { dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1; maxSide = max(maxSide, dp[i][j]); } } } return maxSide * maxSide; } int main() { int n, m; cin >> n >> m; vector<vector<char>> matrix(n, vector<char>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> matrix[i][j]; } } cout << maximalSquare(matrix) << endl; return 0; } ``` 在上述代码中,我们首先定义了一个名为 `maximalSquare` 的函数,该函数接受一个二维字符矩阵 `matrix` 作为参数,返回最大正方形的边长。 在 `main` 函数中,我们首先从标准输入读取矩阵的行数和列数,并创建一个大小为 `n x m` 的二维字符矩阵。然后,我们按行读取矩阵的数据,并调用 `maximalSquare` 函数进行求解。最后,输出最大正方形的边长。 在动态规划的解法中,我们使用一个二维数组 `dp` 来记录以当前位置为右下角的最大正方形的边长。遍历矩阵中的每个元素,如果当前元素为 '1',则根据其左方、上方和左上方的最大正方形边长计算出当前位置的最大正方形边长,并更新 `dp` 数组和最大边长变量。 请注意,以上代码仅为示例,可能需要根据具体题目要求进行适当修改。同时,为了简化示例,未进行输入验证,请确保输入的矩阵符合题目要求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值