思路:
- 不难看出是完全背包类问题,只是要明确一点,“花钱”买债券所花的钱并没有真正的花出去,关键就在于随时都可以卖出任何所持有的债券。那么,实际上我们可以认为每一年都先把所有持有的债券变卖套现,然后拿着全部的现金重新购买债券(重新打背包),寻找能够获得的最多的金钱。
- 明白了这一点,就可以写出最简单的一版答案。dp【】记录 j 金钱能够获得的最多的本金+利润。注意答案是最后能到达的最大背包容量。
代码+讲解:
一:
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W;j++){
dp[j] = max(dp[j] , dp[j-w[i]] + w[i] + v[i]);
}
}
W = dp[W];
}
- 完整代码1(无优化,记录本金加利息:4099ms,39956KB)
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 15;
const int maxw = 10000005;
int w[maxn],v[maxn];
int dp[maxw];
int main(){
int W,m,n;
cin>>W>>m>>n;
for(int i=1;i<=maxw;i++)
dp[i] = i;
for(int i=1;i<=n;i++)
cin>>w[i]>>v[i];
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W;j++){
dp[j] = max(dp[j] , dp[j-w[i]] + w[i] + v[i]);
}
}
W = dp[W];
}
cout<<W<<endl;
return 0;
}
-
核心:
因为 dp[j] 表示花 j 金钱能够获得的本金+最大利润,所以初始化条件有些特殊。
for(int i=1;i<=maxw;i++)
dp[i] = i;
二:
- 状态转移方程:
在这版代码中,由于 dp[j] 仅代表所获利润,因此每次更新的 W 也只做循环边界使用。
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W;j++){
dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
}
}
W += dp[W];
}
- 完整代码2(只记录利息,略微简化计算:3508ms,39864KB)
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 15;
const int maxw = 10000005;
int w[maxn],v[maxn];
int dp[maxw];
int main(){
int W,m,n;
cin>>W>>m>>n;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
cin>>w[i]>>v[i];
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W;j++){
dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
}
}
W += dp[W];
}
cout<<W<<endl;
return 0;
}
三:
- 状态转移方程:
因为债券售价千元起步,所以当我们拥有 j 金钱时,实际能够起作用的只有 j/1000*1000 这么多。故使用 dp[j] 记录当我们拥有的金钱在 [ j,j+1000 ) 区间时,能够获得的最大利润。其实质就是减少了打表时多达几千次的冗余操作。
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W/1000*1000;j+=1000){
dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
}
}
W += dp[W/1000*1000];
}
- 完整代码3(减少打表次数:268ms,39944KB)
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 15;
const int maxw = 10000005;
int w[maxn],v[maxn];
int dp[maxw];
int main(){
int W,m,n;
cin>>W>>m>>n;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
cin>>w[i]>>v[i];
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W/1000*1000;j+=1000){
dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
}
}
W += dp[W/1000*1000];
}
cout<<W<<endl;
return 0;
}
四:
- 状态转移方程:
既然我们知道只需要打整千钱数的背包,何不删去无用空间的背包,减少空间复杂度。我们可以使用 dp[j] 表示钱数仅大于 j*1000 时所能获得的最大利润。
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W/1000;j++){
dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
}
}
W += dp[W/1000];
}
- 注意代码中的注释行,这里我陷入了动态规划问题初学者常触的误区,是对动态规划算法的时间性还不够敏感所致。这里写出为什么算法中没有 t 的参与。首先, dp[j] 代表在前一年结束后,j 本金(前一年的本金)所能获得的最大利润。其次,在完全背包的循环条件下,dp[ j - w[i] ] 代表今年结束后,使用 j 本金(今年的本金)所能获得的最大利润。若将 dp[ j - w[i] ] 改成 dp[ t - w[i] ],显然是不对的,因为 t 实际上是默认完全执行上一年的方案,这不符合动态规划思想。
- 完整代码4(时空复杂度均得到优化:35ms,1052KB)
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 15;
const int maxw = 10005;
int w[maxn],v[maxn];
int dp[maxw];
int main(){
int W,m,n;
cin>>W>>m>>n;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++){
cin>>w[i]>>v[i];
w[i]/=1000;
}
while(m--){
for(int i=1;i<=n;i++){
for(int j=w[i];j<=W/1000;j++){
dp[j] = max(dp[j] , dp[j-w[i]] + v[i]);
}
}
W += dp[W/1000];
}
cout<<W<<endl;
return 0;
}