[C语言实现]数据结构二叉树之《我种下的树会为我遮阳挡雨》

本文详细介绍了二叉树的基本概念,包括树的结构、存储方式(左孩子右兄弟表示法)、二叉树的定义及不同类型(如完全二叉树和满二叉树),并提供了二叉树的代码实现,包括节点创建、手动链接以及前序、中序和后序遍历方法。
摘要由CSDN通过智能技术生成


🥰作者: FlashRider

🌏专栏: 初阶数据结构

🍖知识概要:详解二叉树的概念、二叉树的遍历、以及代码实现。

目录

树的基本概念

树的存储结构与二叉树的实现

树的存储

什么是二叉树

二叉链存储二叉树

二叉树的代码实现


树的基本概念

我们说的树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成的具有层次关系的集合。
因为外形看起来像是一棵根朝上,叶朝下的倒挂的树,所以我们把它称作树。

注意:子树不能有交集,否则就不是树形结构(即每个节点只能有一个父节点)。

一些术语:

节点的度:一个节点含有的字数个数。
叶节点:度为0的节点。
非叶节点/分支节点:度不为0的节点。
父/双亲节点:有子树的节点。
子节点:有父节点的节点。
兄弟节点:具有相同父节点的节点。
树的度:整个树中节点的度取最大值。
节点的层次:从根节点为第一层开始,依次往下递增。
树的高度:节点的最大层次。
祖先:从根节点到该节点所经过的分支上所有的节点。
森林:由m(m>0)棵互不相交的树组成的集合。

树的图示:

注:树的节点存储什么样的数据根据情况而议,图中使用字母表示节点只是为了方便。


树的存储结构与二叉树的实现

树的存储-左孩子右兄弟表示法

我们可以观察一下树的结构,首先对于每一个父节点来说,它都有至少一个子节点,如果有多个兄弟我们可以都看作兄弟节点。对于没有子节点或兄弟节点的节点,我们可以把它的子节点或兄弟节点看作空。
因此我们可以发现任意节点都可以这么表示:子节点,兄弟节点。
子节点存储它的第一个儿子,兄弟节点存储它的兄弟。这样根据一个儿子的兄弟节点就可以遍历所有的儿子,而根据子节点又可以继续往深处找。

typedef int DataType;//树的数据类型 
typedef struct TreeNode
{ 
    struct Node* _child;  //第一个孩子  
    struct Node* _brother;  //自己的兄弟
    DataType _data;  //节点内存的数据
}TNode;

而对于我们目前而言,研究一些特殊的树就可以了,而树中比较典型的一种就是二叉树。

什么是二叉树

二叉树是一种树的结点的有限集合,该集合满足两个性质:

1. 可以为空。 2. 由一个根加上左右两颗子树组成。

对于途中的结点2来说,它的右子树为空,对于3、5、6来说,左右子树都为空,但也满足二叉树的性质。因此这棵树是一颗二叉树。

完全二叉树:

除了最后一层叶子结点可以不用铺满,其他每一层的结点都必须满足最大值。比如上图中的第一层和第二层都满足结点为最多,第三层叶子节点最多为4个,但只有3个,因为叶子节点不用满足铺满,所以上图是一个完全二叉树。

满二叉树

每一层的结点都为最大值,即每一层结点都铺满。满二叉树是一种特殊的完全二叉树。

二叉树的一些性质:

1. 若根节点层次为1,则一颗非空二叉树第i层最多有2的i-1次方。
2. 若根节点层次为1,则深度为h的二叉树,最大结点数为2的h次方-1。
3. 对于任何一颗二叉树,如果度为0的叶节点个数为n0, 则度为2的分支结点个数为n2,则满足
n0 = n2 + 1。
4. 若根节点层次为1,则有n个结点的满二叉树深度为h = log2(n+1)    以2为底 n+1为对数。
5. 如果从上到下从左到右,根结点为0开始编号,对于结点 i 则:
        5.1 若 i 不为0,则(i-1)/2为父节点.
        5.2 若2i+1<n, 则2i+1为左孩子。否则无左孩子。
        5.3 若2i+2<n, 则2I+2为右孩子。否则无右孩子。

二叉链存储二叉树

我们可以使用链式结构存储二叉树。

typedef int DataType;//数据类型
typedef struct BinaryTreeNode
{
    struct BinaryTreeNode* _left;//左孩子
    struct BinaryTreeNode* _right;//右孩子
    DataType _data;//数据
}BTNode;

三叉链
如果使用三叉链存储二叉树,那么就多一个指向父亲的指针,可以快速找到父节点,在某些需要频繁找父节点的情况下可以使用。

typedef int DataType;//数据类型
typedef struct BinaryTreeNode
{
    struct BinaryTreeNode* _parent;//父节点
    struct BinaryTreeNode* _left;//左孩子
    struct BinaryTreeNode* _right;//右孩子
    DataType _data;//数据
}BTNode;

二叉树的代码实现

有了前面的知识,我们已经明白二叉树的结构是怎样的了,那么我们可以考虑如何创建二叉树的节点,其实也很简单,和链表节点类似,malloc一个新节点出来,并存储数据就行了,而二叉树节点的创建与链接我们一般用递归实现,这里就不再赘述,我们就直接手动连接。

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>
//二叉树结构
typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;
//创建一个节点
BTNode* BuyNode(BTDataType x)
{
	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return NULL;
	}
	newnode->data = x;
	newnode->left = newnode->right = NULL;
	return newnode;
}
//手动链接一颗二叉树
BTNode* CreatBinaryTree()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);
	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;
	return node1;
}

二叉树的遍历:

二叉树的遍历分为前序中序后序三种,而这三种的区别就是根节点在前还是在后。
遍历顺序为:左子树,根节点,右子树。 左根右,因此是中序遍历。以此类推。
而我们可以使用递归非常简单的去实现这三种遍历,因为树本身就是一种递归结构。

如果当前节点为空,代表不需要再递下去了,就return,如果不为空代表可以继续递左右子树,因此看遍历需求考虑先递再打印还是先打印再递。

//前序遍历: 根 左 右
void PrevOrder(BTNode* bt)
{
	if (bt == NULL)
	{
		printf("N ");
		return;
	}
	printf("%d ", bt->data);
	PrevOrder(bt->left);
	PrevOrder(bt->right);
}
//中序遍历 左 根 右
void InOrder(BTNode* bt)
{
	if (bt == NULL)
	{
		printf("N ");
		return;
	}
	PrevOrder(bt->left);
	printf("%d ", bt->data);
	PrevOrder(bt->right);
}
//后序遍历 左 右 根
void PostOrder(BTNode* bt)
{
	if (bt == NULL)
	{
		printf("N ");
		return;
	}
	PrevOrder(bt->left);
	PrevOrder(bt->right);
	printf("%d ", bt->data);
}

一些简单常见的操作:

对于一颗二叉树,我们也许会求它的高度或结点个数,这些该怎么做呢?

对于求结点个数来说,我们也可以使用递归思想(分治思想),一棵树的结点个数等于左子树节点数+右子树节点数+根结点,因此sum = left + right + 1;对于这棵树的每一颗子树我们都可以这么想,因此代码就显而易见了。
求叶子结点个数也很简单,只要一个树左右子树都为空,则就是叶结点了,在求结点个数的基础上改一改就行。

对于求高度来说,我们也可以递归,一棵树的高度为左右子树高度的最大值,加上本身这一层。即h = max(左子树高度,右子树高度) + 1。

//求结点个数
int BTreeSize(BTNode* bt)
{
	if (bt == NULL)	return 0;
	return BTreeSize(bt->left) + BTreeSize(bt->right) + 1;
}
//求叶结点个数
int BLeafSize(BTNode* bt)
{
	if (bt == NULL)
		return 0;
	if (bt->left == NULL && bt->right == NULL)
		return 1;
	return BLeafSize(bt->left) + BLeafSize(bt->right);
}
//求树的高度
int BTreeHeight(BTNode* bt)
{
	if (bt == NULL)
		return 0;
	int left = BTreeHeight(bt->left);
	int right = BTreeHeight(bt->right);
	return left > right ? left + 1 : right + 1;
}

一些常见操作:

求树的第k层的结点个数:因为这个问题指定了求哪一层,所以我们拿一个变量k来存储剩余层数,当k减到1时代表就是第k层了。

查找值为x的结点:也是用一个变量存储x,如果当前结点的data(前提是结点不为空)为x,就可以返回当前结点,否则返回左子树右子树中递归查找结果不为空的那一个。

//求树第k层的结点个数
int BinaryTreeLevelKSize(BTNode* bt, int k)
{
	assert(k > 0);
	if (k == 1)
		return 1;
	if (bt == NULL)
		return 0;
	return BinaryTreeLevelKSize(bt->left, k - 1) + BinaryTreeLevelKSize(bt->right, k - 1);
}
//二叉树查找值为x的结点
BTNode* BTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;
	if (root->data == x)
		return root;
	BTNode* r1 = BTreeFind(root->left, x);
	if (r1) return r1;
	BTNode* r2 = BTreeFind(root->right, x);
	if (r2) return r2;
	return NULL;

	//if (r1 == NULL && r2 == NULL)
	//	return NULL;
	//if (r1 == NULL) return r2;
	//else return r1;
}

二叉树的基本知识点就差不多到这了,接下来我们就可以调试代码了。

//求前中后序遍历,并打印二叉树的结点/叶结点个数以及高度
int main()
{
	BTNode* root = CreatBinaryTree();
	PrevOrder(root);
	printf("\n");
	InOrder(root);
	printf("\n");
	PostOrder(root);
	printf("\n");
	printf("%d\n", BTreeSize(root));
	printf("%d\n", BLeafSize(root));
	printf("%d\n", BTreeHeight(root));
	return 0;
}

当然,为了避免内存泄漏,记得要销毁二叉树噢。

//二叉树的结点空间释放
void BTreeDestroy(BTNode* bt)
{
	if(bt == NULL)	return;
	BTreeDestroy(bt->left);
	BTreeDestroy(bt->right);
	free(bt);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值