前言
我们以及学习了许多数据类型,例如char short int float double,那么你知道这些数据是如何在内存中存储的吗?
1、数据类型的意义
将数据类型分类有许多实际意义
1.更有利于内存空间的分配。我们想象一个场景,当你想存下一个人的身高时,我们知道身高是不存在负数的,我们这时可以定义一个unsigned float类型的数据(unsigned是指无符号数);当你想存入一个人的年龄时,我们可以定义short型,因为我们知道人的年龄一般不会太大,我们不需要太大的内存空间去存储一个较小的数值。当你想存储一个精度非常大的小数时,你可以定义一个double类型的数据。这样才可以让你的内存空间得到有效率的利用。
2.可以区分我们看待内存的视角。我们存除整型数据时,与我们存储浮点型数据时,其数据在内存的含义是不同的。
2、整型在内存中的存储
我们在c语言的学习过程中,总是会去定义一个数据类型,例如:
int a = 10;
int b = -20;
那他们在内存中究竟是怎么存储的呢?
2.1原码、反码和补码
要知道整型在内存中的存储我们就要首先了解一下什么是原码、反码和补码。
例如一个数字-10,转换成8位二进制的原码就是:10001010
其中,第一位我们规定它为符号位,0表示这个数是正数,1表示这个数是负数。同时,反码和补码也是如此。
原码转换为反码就是:原码符号位不变,其它位按位取反
得到:11110101。这个就是反码
而此时,我们再将反码+1,我们就可以得到补码
补码:11110110
综上:我们对原码、反码、补码的得到方式进行总结。
原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码:将原码除符号位(第一位)外,按位取反得到反码。
补码:反码+1得到补码。
但是这里要注意,正数的原反补相同,即都是00001010.
2.2大小端存储
什么是大小端存储?
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址 中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
我们常用的x86使用的就是小端存储,即将数据的低位保存在内存的低地址中。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高
地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式
还是小端模式。
由此看来,整型在内存中的存储是原反补与大小端存储的结合体。
3、浮点数在内存中的存储
说起浮点数的存储,我们就不得不提到一个标准:IEEE 754
其具体标准是:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例:十进制的5.5,写成二进制:101.1,那么就相当于1.011*2^2。
那么按照上面的格式,S=0,M=011(小数点前面的1自动省略),E=2.
下面是IEEE 754对于32位浮点数(float)的二进制表示方式
对于64位浮点数(double)的二进制表示方式:
对于S没有什么可描述的,无非就是1表示是负数,0表示是正数。
对于E首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出
现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数
是127;对于11位的E,这个中间
数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即
10001001。
对于M,例如1.01,我们会默认第一位是1,故我们只保存01,这样我们可以节约一个空间。
将E从内存中取出时,要经过下面的操作
指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
00111111000000000000000000000000
取出不过是它的逆过程,阶码自然要减去127,尾数添上1。