多维数据生成与压缩分类实验分析

87、a. 生成两组各100个三维高斯向量,其均值向量和协方差矩阵如下:均值向量 μ 为 [3; 5; -2],协方差矩阵 Σ 为 [[5, -7, 7]; [-7, 13, -12]; [7, -12, 11]]。b. 对第一组进行主成分分析,然后用得到的结果对第二组进行投影。总结这种分析方法的泛化能力。c. 对生成的向量进行预处理,使每个分量的均值为0且标准差为1,然后重复上述分析。将结果与之前的结果进行比较,总结这种数据预处理的作用。

可按以下步骤解答:

a. 使用编程语言(如MATLAB)中的相关函数(如 mvnrnd )根据给定的均值向量和协方差矩阵生成两组各100个三维高斯向量。

b. 对第一组向量计算协方差矩阵,求其特征值和特征向量,选取特征值大的特征向量构成变换矩阵,用该矩阵对第一组向量进行主成分分析,再用此变换矩阵对第二组向量投影。若能较好地投影说明泛化能力强。

c. 对生成的向量进行标准化预处理(减去均值除以标准差),重复 b 步骤,对比结果。若预处理后结果更好,说明预处理有助于去除数据量纲等影响,提升分析效果。

88、生成两类各500个向量,第一类向量均匀分布在半径为0.3的球内,第二类向量均匀分布在半径从0.7到1的球冠内,两类向量均以原点为中心。使用主成分分析(PCA)、线性判别分析(LDA)和随机初始化的萨蒙(Sammon)方法将这两类向量投影到二维空间。然后使用由PCA解初始化的萨蒙算法重复投影,并对得到的结果进行总结。

可按以下步骤操作:

  1. 生成两类向量;
  2. 分别用PCA、LDA和随机初始化的Sammon方法进行二维投影;
  3. 用PCA解初始化Sammon算法再投影;
  4. 对比投影结果,分析各类方法投影效果、类间分离程度、数据分布等方面得出结论。

89、a. 生成三类各1500个二维高斯向量,其均值向量和协方差矩阵如下:第一类均值向量为[3; 5],协方差矩阵为[[4, 6]; [6, 12]];第二类均值向量为[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值