87、a. 生成两组各100个三维高斯向量,其均值向量和协方差矩阵如下:均值向量 μ 为 [3; 5; -2],协方差矩阵 Σ 为 [[5, -7, 7]; [-7, 13, -12]; [7, -12, 11]]。b. 对第一组进行主成分分析,然后用得到的结果对第二组进行投影。总结这种分析方法的泛化能力。c. 对生成的向量进行预处理,使每个分量的均值为0且标准差为1,然后重复上述分析。将结果与之前的结果进行比较,总结这种数据预处理的作用。
可按以下步骤解答:
a. 使用编程语言(如MATLAB)中的相关函数(如 mvnrnd
)根据给定的均值向量和协方差矩阵生成两组各100个三维高斯向量。
b. 对第一组向量计算协方差矩阵,求其特征值和特征向量,选取特征值大的特征向量构成变换矩阵,用该矩阵对第一组向量进行主成分分析,再用此变换矩阵对第二组向量投影。若能较好地投影说明泛化能力强。
c. 对生成的向量进行标准化预处理(减去均值除以标准差),重复 b
步骤,对比结果。若预处理后结果更好,说明预处理有助于去除数据量纲等影响,提升分析效果。
88、生成两类各500个向量,第一类向量均匀分布在半径为0.3的球内,第二类向量均匀分布在半径从0.7到1的球冠内,两类向量均以原点为中心。使用主成分分析(PCA)、线性判别分析(LDA)和随机初始化的萨蒙(Sammon)方法将这两类向量投影到二维空间。然后使用由PCA解初始化的萨蒙算法重复投影,并对得到的结果进行总结。
可按以下步骤操作:
- 生成两类向量;
- 分别用PCA、LDA和随机初始化的Sammon方法进行二维投影;
- 用PCA解初始化Sammon算法再投影;
- 对比投影结果,分析各类方法投影效果、类间分离程度、数据分布等方面得出结论。