医疗领域研究:从ICG信号到自然语言理解的探索
在医疗研究领域,有两项重要的研究值得我们关注,一项是关于正常ICG信号中不同亚型波形对左心室射血时间(LVET)估计影响的研究,另一项是在西班牙语药物领域使用联合自然语言理解对词嵌入的评估。
ICG信号研究:不同亚型波形对LVET估计的影响
研究主要聚焦于探究正常ICG信号中不同亚型波形对健康志愿者LVET估计的影响,并比较逐搏ICG波形与常用的集合平均方法。
- 志愿者信号亚型分析 :四位志愿者的信号中各亚型占比不同。V1和V4在两种方法计算的平均LVET值上略有差异,V1信号中亚型1占比最高(81%),V4信号中亚型0占比最高(35%),且这两种情况都有特征明显的真实X点。
- MAPE误差分析 :
| MAPE LVET (%) | V1 | V2 | V3 | V4 |
| — | — | — | — | — |
| Subtype 0 | 17.33 | 20.81 | 7.91 | 15.16 |
| Subtype 1 | 21.33 | 17 | 16.00 | 20.93 |
| Subtype 2 | 26.51 | 12.07 | – | 16.79 |
| Subtype 3 | 14.66 | 14.58 | 16.22 | 14.82 |
| Subtype 4 | 12.29 | 16.68 | 15.13 | 17.24 |
| Mean MAPE | 18.42 | 16.23 | 13.82 | 16.99 |
数据分析表明
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



