树的基本概念
(1) 树是由根节点和若干颗子树构成的。树是由一个集合以及在该集合上定义的一种关系构成的。集合中的元素称为树的节点,所定义的关系称为父子关系。父子关系在树的节点之间建立了一个层次结构。在这种层次结构中有一个节点具有特殊的地位,这个节点称为该树的根节点,或称为树根。
(2) 空集合也是树,称为空树。空树中没有节点;
(3) 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
(4) 节点的度:一个节点含有的子节点的个数称为该节点的度;
(5) 叶节点或终端节点:度为0的节点称为叶节点;
(6) 非终端节点或分支节点:度不为0的节点;
(7) 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
(8) 兄弟节点:具有相同父节点的节点互称为兄弟节点;
(9) 树的度:一棵树中,最大的节点的度称为树的度;
(10) 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
(11) 树的高度或深度:树中节点的最大层次;
(12) 节点的祖先:从根到该节点所经分支上的所有节点;
(13) 子孙:以某节点为根的子树中任一节点都称为该节点的子孙;
(14) 森林:由棵互不相交的树的集合称为森林。
二叉树
(1) 二叉树的定义及其主要特征
a. 二叉树的基本形态:空二叉树、单节点二叉树、左子树、右子树
b. 性质:
[1] 在非空二叉树中,第i层上至多有2^(i-1) 个结点。
[2] 深度为k的二叉树至多有2^k - 1个结点
[3] 对任何一颗二叉树,若其叶子结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。
[4] n个结点的完全二叉树深度为:log2(n)向下取整 + 1
[5] 二叉树的堆式存储: 节点p的左儿子:2x,右儿子:2x+1
c. 两种特殊的二叉树
[1] 满二叉树:一颗深度为k且有2^k-1个结点的二叉树
[2] 如果深度为k,有n个结点的二叉树,当且仅当其每个结点都与深度为k的满二叉树中编号从1到n的结点一一对应,该二叉树称为完全二叉树
(2) 二叉树的顺序存储结构和链式存储结构
(3) 二叉树的遍历
a. 前序遍历
b. 中序遍历
c. 后序遍历
d. 根据前序 + 中序重建二叉树
(4) 线索二叉树的基本概念和构造
对二叉树节点的指针域做如下规定:
a. 若节点有左孩子,则Lchild指向左孩子,否则指向直接前驱;右孩子同理(后继);
b. 增加两个标志域,Ltag表示指向的是子节点还是前驱;Rtag同理
c. 指向前驱和后继的指针叫做线索。按照某种次序遍历,加上线索的二叉树称之为线索二叉树
已知儿子求父结点:
前序:
根 左 右
中序:
左 根 右
后序:
左 右 根
当所有节点都有两个子树或者度为空时,才能根据前序和后序唯一确定一棵树
否则无法确定节点时左孩子还是右孩子
前+中 后+中 层+中
可以构造二叉树
重建二叉树
输入一棵二叉树前序遍历和中序遍历的结果,请重建该二叉树。
注意:
- 二叉树中每个节点的值都互不相同;
- 输入的前序遍历和中序遍历一定合法;
数据范围
树中节点数量范围
[
0
,
100
]
[0,100]
[0,100]。
样例
给定:
前序遍历是:[3, 9, 20, 15, 7]
中序遍历是:[9, 3, 15, 20, 7]
返回:[3, 9, 20, null, null, 15, 7, null, null, null, null]
返回的二叉树如下所示:
3
/ \
9 20
/ \
15 7
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<int, int> pos;
vector<int> preorder, inorder;
TreeNode* build(int a, int b, int x, int y){
if(a > b) return NULL;
auto root = new TreeNode(preorder[a]);
int k = pos[root->val];
root->left = build(a + 1, a + 1 + k - 1 - x, x , k - 1);
root->right = build(a + 1 + k - 1 - x + 1, b, k + 1, y);
return root;
}
TreeNode* buildTree(vector<int>& _preorder, vector<int>& _inorder) {
preorder = _preorder, inorder = _inorder;
int n = inorder.size();
for(int i = 0; i < n; i++) pos[inorder[i]] = i;
return build(0, n - 1, 0, n - 1);
}
};
树、森林
(1) 树的存储结构
a. 只存父节点
b. 邻接表存储所有子节点
c. 左儿子右兄弟
(2) 森林F与二叉树T的转换
a. 原树中叶子节点数 = 转换后的树中有右儿子的节点数 + 1
b. F的前序遍历就是T的前序遍历
c. F的后序遍历就是T的中序遍历
(3) 树和森林的遍历
a. 前序遍历
b. 后序遍历
左儿子右兄弟:
二叉树的带权路径长度
二叉树的带权路径长度(WPL)是二叉树中所有叶结点的带权路径长度之和,也就是每个叶结点的深度与权值之积的总和。
给定一棵二叉树 T T T,请你计算并输出它的 WPL。
注意,根节点的深度为 0 0 0。
样例
输入:二叉树[8, 12, 2, null, null, 6, 4, null, null, null, null]如下图所示:
8
/ \
12 2
/ \
6 4
输出:32
数据范围
二叉树结点数量不超过
1000
1000
1000。
每个结点的权值均为不超过
100
100
100 的非负整数。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int dfs(TreeNode* root, int depth){
if(!root) return 0;
if(!root->left && !root->right) return root->val * depth;
return dfs(root->left , depth + 1) + dfs(root->right, depth + 1);
}
int pathSum(TreeNode* root) {
return dfs(root, 0);
}
};
包含n个节点的二叉树的数量是第n个卡特兰数