1. 排序的基本概念
(1) 内排序和外排序
(2) 算法的稳定性
2. 插入排序
(1) 直接插入排序
a. 时间复杂度
[1] 最好情况:O(n)
[2] 平均情况:O(n^2)
[3] 最坏情况:O(n^2)
b. 辅助空间复杂度
O(1)
c. 稳定
(2) 折半插入排序
a. 时间复杂度
[1] 最好情况:O(n)
[2] 平均情况:O(n^2)
[3] 最坏情况:O(n^2)
b. 辅助空间复杂度
O(1)
c. 稳定
3. 冒泡排序(bubble sort)
(1) 时间复杂度
a. 最好情况:O(n)
b. 平均情况:O(n^2)
c. 最坏情况:O(n^2)
(2) 空间复杂度
O(1)
(3) 稳定
4. 简单选择排序
(1) 时间复杂度
a. 最好情况:O(n^2)
b. 平均情况:O(n^2)
c. 最坏情况:O(n^2)
(2) 空间复杂度
O(1)
(3) 不稳定
5. 希尔排序(shell sort)
(1) 时间复杂度
O(n^(3/2))
(2) 空间复杂度
O(1)
(3) 不稳定
6. 快速排序
(1) 时间复杂度
a. 最好情况:O(nlogn)
b. 平均情况:O(nlogn)
c. 最坏情况:O(n^2)
(2) 空间复杂度
O(logn)
(3) 不稳定
7. 堆排序
(1) 时间复杂度
a. 最好情况:O(nlogn)
b. 平均情况:O(nlogn)
c. 最坏情况:O(nlogn)
(2) 空间复杂度
O(logn)
(3) 不稳定
8. 二路归并排序(merge sort)
(1) 时间复杂度
a. 最好情况:O(nlogn)
b. 平均情况:O(nlogn)
c. 最坏情况:O(nlogn)
(2) 空间复杂度
O(n)
(3) 稳定
插入排序对部分有序的序列效率很高
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 100010;
int n, sz;
int q[N], w[N];
//直接插入排序
void insert_sort(){
for(int i = 1; i < n; i++){
int t = q[i], j = i;
while(j && q[j - 1] > t){
q[j] = q[j - 1];
j --;
}
q[j] = t;
}
}
//折半插入排序
void binary_insert_sort(){
for(int i = 1; i < n; i++){
if(q[i - 1] <= q[i]) continue;
int t = q[i];
int l = 0, r = i - 1;
while(l < r){
int mid = l + r >> 1;
if(q[mid] > t) r = mid;
else l = mid + 1;
}
for(int j = i - 1; j >= r; j --)
q[j + 1] = q[j];
q[r] = t;
}
}
void bubble_sort(){
for(int i = 0; i < n - 1; i++){
bool has_swap = false;
for(int j = n - 1; j > i; j--){
if(q[j] < q[j - 1]){
swap(q[j], q[j - 1]);
has_swap = true;
}
}
if(!has_swap) break;
}
}
//简单选择排序
void select_sort(){
for(int i = 0; i < n - 1; i++){
int k = i;
for(int j = i + 1; j < n; j++)
if(q[j] < q[k])
k = j;
swap(q[i], q[k]);
}
}
//希尔排序
void shell_sort(){
for(int d = n / 3; d; d = d == 2 ? 1 : d / 3){
for(int start = 0; start < d; start ++){
for(int i = start + d; i < n; i += d){
int t = q[i], j = i;
while(j > start && q[j - d] > t){
q[j] = q[j - d];
j -= d;
}
q[j] = t;
}
}
}
}
//快速排序
void quick_sort(int l, int r){
if(l >= r) return;
int i = l - 1, j = r + 1, x = q[(l + r) / 2];
while(i < j){
do i++; while(q[i] < x);
do j--; while(q[j] > x);
if(i < j) swap(q[i], q[j]);
}
quick_sort(l, j);
quick_sort(j + 1, r);
}
void down(int u){
int t = u;
if(u * 2 <= sz && q[u * 2] > q[t]) t = u * 2;
if(u * 2 + 1 <= sz && q[u * 2 + 1] > q[t]) t = u * 2 + 1;
if(u != t){
swap(q[u], q[t]);
down(t);
}
}
//堆排序,下标从1开始
void heap_sort(){
sz = n;
for(int i = n / 2; i; i --) down(i);
for(int i = 0; i < n - 1; i ++){
swap(q[1], q[sz]);
sz --;
down(1);
}
}
//归并排序
void merge_sort(int l, int r){
if(l >= r) return;
int mid = l + r >> 1;
merge_sort(l, mid), merge_sort(mid + 1, r);
int i = l, j = mid + 1, k = 0;
while(i <= mid && j <= r)
if(q[i] <= q[j]) w[k++] = q[i++];
else w[k++] = q[j++];
while(i <= mid) w[k++] = q[i++];
while(j <= r) w[k++] = q[j++];
for(i = l, j = 0; j < k; i++, j++) q[i] = w[j];
}
int main(){
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d", &q[i]);
// insert_sort();
// binary_insert_sort();
// bubble_sort();
// select_sort();
// shell_sort();
// quick_sort(0, n - 1);
// heap_sort();
merge_sort(0, n - 1);
for(int i = 0; i < n; i++) printf("%d ", q[i]);
return 0;
}