浮点数就是有小数点的数。
在C语言中有三种浮点数,分别为float,double和long double。下面分析一下其实现。
#include <stdio.h>
int main(int argc, char *argv[])
{
float a;
double b;
long double c;
return 0;
}
这是一个简单的C语言程序,定义了三个不同类型的变量a、b、c。编译后用gdb调试下
(gdb) p sizeof(a)
$1 = 4
(gdb) p sizeof(b)
$2 = 8
(gdb) p sizeof(c)
$3 = 16
可以看到float占4字节,double占8字节,long double占16字节。
在计算机中存储浮点数一般使用科学技术法,如12345=>0.12345E5,只不过在计算机中使用的是二进制数,像十进制数10,先翻译成二进制数110,再换成指数形式0.11*(2)3。这里以float为例来说明一下浮点数的存储方式。
(gdb) set var a = 0
(gdb) x/t &a
0x7fff5fbffbbc: 00000000000000000000000000000000
把a的值设为0,以二进制方式现实,结果是32个零。计算机把这32位数分成3部分,[0]为符号位,[1~8]为指数部分,[9~31] 为底数部分。
再看看十进制数2的表示
(gdb) set var a = 2
(gdb) x/t &a
0x7fff5fbffbbc: 01000000000000000000000000000000
符号位为0,表示正,1为负,指数部分为10000000,底数部分为23个零。
使用科学技术法时最高位都是1,如101,1100等,在高位放0是没有意义的,如001010可表示为1010,因此,底数部分最高位的1将舍去,因为最高位必定有一个1,所以这里的23个0实际为100000000000000000000000,表达的底数为0.100000000000000000000000,即1。
指数部分为10000000。底数为1这里要表示的数为10,即十进制数为2,则指数为1,可是10000000如果能表示2呢,再做个实验。
(gdb) set var a = 1
(gdb) x/t &a
0x7fff5fbffbbc: 00111111100000000000000000000000
这里底数部分还是23个0,表示的底数为1,要表示1的话指数部分为0。
指数部分考虑到纯小数指数为负的原因,把指数看成无符号数加上127才是其储存的指数值。
如10000000要表达的指数为1。
来实验一下,十进制数22.2,翻译成二进制数为10110.001100110011001100110011001100110011....................
则底数为01100011001100110011001,之后的数字将会被舍去,这就是为什么浮点数不能存储精确值的原因
指数为4,加127那就是,131,翻译成二进制数那就是10000011
符号位为0,那么十进制数22.2在计算机中则存储为01000001101100011001100110011001
看验证,和之前计算完全符合。
(gdb) set var a = 22.2
(gdb) x/t &a
0x7fff5fbffbbc: 01000001101100011001100110011001