自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 资源 (3)
  • 收藏
  • 关注

转载 Image Retrieval

Papers1. Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Dataarxiv: http://arxiv.org/abs/1312.4740paper: http://legacy.openreview.n

2017-06-04 13:14:44 2092

转载 caffe 命令系列(一)

caffe的运行提供三种接口:c++接口(命令行)、Python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文

2016-11-30 16:54:30 474

原创 机器学习损失函数

Caffe的LossLayer主要由6个:(1)ContrastiveLossLayer对比损失函数主要用来训练siamese网络,改网络为专门处理同时输入两张图像的网络,如用于FaceVerification的DeepID网络。在改网络的最后需要对比两张图像是否为一张人脸,因此需要一个对比损失函数。(2)  EuclideanLossLayer适合回归任务,尤

2016-11-17 16:42:57 1907

原创 哈希学习(2)—— Hashing图像检索资源

哈希方法公布代码的:CSDSH:Column Sampling based Discrete Supervised HashingSGH :Scalable Graph Hashing with Feature Transformation [Paper]AGH: Hashing with Graphs [Paper] [Code]BPBC: Learn

2016-07-11 00:25:52 8559

转载 正则化方法:L1和L2 regularization、数据集扩增、dropout

正则化方法:防止过拟合,提高泛化能力在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work。为了防止overfitt

2016-07-05 00:19:14 897

原创 人脸识别——必读文章

人脸识别主要由人脸检测、跟踪、特征提取、识别四个阶段人脸检测、跟踪其目的主要是在图像或视频中找到各个人脸所在的位置和大小,但是对于追踪而言,还需要确定帧间不同人脸的对应关系。推荐文章1:(点击此处下载)Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004.Viola

2016-06-23 20:17:53 525

原创 特征描述子(-)—HOG具体实现过程

方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。其提取算法具体实现过程如下:1.图像灰度化处理 (降低图像局部阴影和光照变化的影响)。2.Gamma 校正法对灰度图像进行颜色空间的规范化(归一化)    (降低图秀对比度,进一步降低

2016-05-30 09:50:14 2559

原创 C++字符及字符串处理函数

1. find_first_of(char c, int start )查找字符串中第1个出现的c,由位置start开始。如果有匹配,则返回匹配位置;否则,返回-1. 默认情况下,start为0,函数搜索整个字符串。2. find_last_of(char c )查找字符串中最后1个出现的c ,从末尾开始。如果有匹配,则返回匹配位置;否则,返回-1。3.提取字符子串 str

2016-05-22 16:30:43 507

原创 Python学习(一)

python中 sys.path.append()作用对于模块和自己写的程序不在同一个目录下,可以把模块的路径通过sys.path.append(路径)添加到程序中。在程序开头加上,调用时不报错:import syssys.path.append(’引用模块的地址')

2016-04-06 13:33:31 419

转载 Deep learning简介

[1]Deep learning简介[2]Deep Learning训练过程[3]Deep Learning模型之:CNN卷积神经网络推导和实现[4]Deep Learning模型之:CNN的反向求导及练习[5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN[6]Deep Learning模型之:CN

2016-04-01 01:25:19 406

转载 计算机视觉、机器学习相关领域论文和源代码大集合

本文转自:http://blog.csdn.net/zouxy09/article/details/8550952一、特征提取Feature Extraction:·         SIFT [1] [Demo program][SIFT Library] [VLFeat]·         PCA-SIFT [2] [Project]·         Af

2016-03-28 09:49:43 642

转载 机器学习算法之随机森林(Random Forest)

本文来自:BackNode随机森林作为两大ensemble methods之一,近年来非常火热,本文试图探讨一下其背后原理,欢迎指正!BaggingBagging方法是ensemble methods中获得用于训练base estimator的数据的重要一环。 正如其名,Bagging方法就是将所有training data放进一个黑色的bag中,黑色意味着我们看不

2016-03-17 20:09:15 30407 1

原创 vl_feat+ win 64 + vs 2012 配置

步骤:1  .官网下载后解压得到  vlfeat ( 自己改名为vlfeat);放在D盘                   2.向系统环境变量下的系统变量下path 添加路径:D:vlfeat\bin\win32(64位系统也是),确定后,注销电脑      3. 在vs下新建系统工程 ,右键点击 ‘属性’选项 ,4.分别在vc++选项下  包含目录下

2016-03-15 20:32:19 521

原创 Matlab 视频读写操作

1):视频读取,function  moive=read_moive(file)      readerobj=VideoReader(file)      NumFrame=readerobj.NumberOfFrames;      for k=1:NumFrame             frame=read(readerobj,k);            

2016-03-14 10:29:01 1373

转载 手势识别数据库ChaLearn Gesture Challenge_1:CGD数据库简单介绍

本文转载自http://www.cnblogs.com/tornadomeet/archive/2013/01/10/2854421.htmlChaLearn Gesture Challenge挑战赛是手势识别中比较新的(2011年开始的)一个挑战赛,属于机器学习挑战赛中的一个,其初衷是进行One-Shot learning的挑战,当然也不局限在此。官网为:http://gestu

2015-10-21 19:42:30 9718 6

转载 SPAMS稀疏建模工具箱

原文出自https://chunqiu.blog.ustc.edu.cn/?p=570 SPAMS (SPArse Modeling Software)是一个为解决各种稀疏估计问题的开源优化工具箱,其主页为http://spams-devel.gforge.inria.fr/index.html ,其可实现的功能如下:Dictionary learnin

2015-10-21 10:15:33 3363 7

转载 机器学习:判别模型与生成模型

转载:http://www.cnblogs.com/TenosDoIt/p/3721074.html根据网上的相关博客总结了一下机器学习中的这两个概念,参考博客见文末。  生成模型:无穷样本==》概率密度模型 = 生成模型==》预测 判别模型:有限样本==》判别函数 = 预测模型==》预测 机器学习中的模型一般分为两类

2015-10-20 20:46:41 753

转载 Gabor滤波小结

转载请注明:http://www.cppblog.com/polly-yang/一.房屋检测小结       一开始,直接用LSD(Line Segment Detector)检测VHR(Very High Resolution)遥感卫星图像中的房屋,效果很屎。效果很屎的主要原因是因为存在各种干扰,概括下来,主要有:      1. 道路。道路干扰性强主要是因为道路

2015-10-12 14:55:31 742

转载 关于手势轮廓的提取及手势跟踪和识别的关键部分

文章转自http://m.oschina.net/blog/271841    对于手势的提取主要的目的是将手势从较为复杂的环境中提取出来,由于环境复杂直接采取灰度图像二值化一帮无法取得较好的效果。虽然通过颜色手套的方法来解决这个问题能取得较好的效果,但是又引入了不必要的麻烦,经过综合考虑,在设计中我们采用肤色提取手势轮廓的方法,经过实验,该方法效果较为明显,在大多

2015-09-28 10:26:12 8901 3

转载 OpenCV_连通区域分析(Connected Component Analysis/Labeling)

文章转自http://blog.csdn.net/icvpr/article/details/10259577【摘要】本文主要介绍在CVPR和图像处理领域中较为常用的一种图像区域(Blob)提取的方法——连通性分析法(连通区域标记法)。文中介绍了两种常见的连通性分析的算法:1)Two-pass;2)Seed-Filling种子填充,并给出了两个算法的基于OpenCV的C++

2015-09-27 12:38:53 643

转载 数字图像处理:各种变换滤波和噪声的类型和用途总结

文章转自 http://imgtec.eetrend.com/blog/4564一、基本的灰度变换函数1.1.图像反转适用场景:增强嵌入在一幅图像的暗区域中的白色或灰色细节,特别是当黑色的面积在尺寸上占主导地位的时候。1.2.对数变换(反对数变换与其相反)过程:将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值。用处:用来扩展图像中暗像素的值,同

2015-09-26 22:46:53 2077

原创 Opencv中cvFindContours函数解析

cvFindContours 2013-01-17 13:26:44分类: C/C++int Nc = cvFindContours(rawimage,storage,&first_contour,sizeof(CvContour),CV_RETR_LIST);Nc返回值为,检测出来的轮廓个数。CV

2015-09-08 14:26:04 1101

转载 背景建模与前景检测(Background Generation And Foreground Detection)

背景建模与前景检测(Background Generation And Foreground Detection) http://www.cnblogs.com/xrwang/archive/2010/02/21/ForegroundDetection.html作者:王先荣前言    在很多情况下,我们需要从一段视频或者一系列图片中找到感兴趣的目标,

2015-09-08 10:21:39 1495

转载 OpenCV中的数据结构CvSeq(序列)

OpenCV中的数据结构CvSeq(序列)动态结构序列CvSeq是所有OpenCv动态数据结构的基础。有两种类型的序列:稠密序列,稀疏序列:(1) 稠密序列都派生自CvSeq,他们用来代表可扩展的一维数组 — 向量、栈、队列和双端队列。数据间不存在空隙(连续存储)。如果元素元素从序列中间被删除或插入新的元素到序列,那么此元素后边的相关元素全部被移动。(2)稀疏序列派生自CvSet,

2015-08-31 14:57:06 462

转载 CvMemStorage *storage=cvCreateMemStorage()

CvMemStorage *storage=cvCreateMemStorage();用来创建一个内存存储器,来统一管理各种动态对象的内存,比如说序列,这个函数返回一个新创建的内存存储器指针。里面有个参数block_size对应内存器中每个内存块的大小,为0时内存块默认大小为64k(没设过大小,一直用的是默认0)。打个比方我们用opencv提取轮廓的时候,就要申请一块内存来存储找到的轮廓序列,所以

2015-08-31 14:46:28 444

转载 Kinect开发教程:利用OpenNI进行手势识别

本文转自:http://blog.csdn.net/chenxin_130/article/details/6703301 这是第二个范例,小斤将介绍如何使用OpenNI让Kinect识别出手势,并显示输出。目前版本的OpenNI支持四种手势:RaiseHand, Wave, Click和MovingHand,分别代表手的“举起”,“挥动”,“前推”和“移动”四种动作。值得一提的是,当

2015-08-28 14:18:00 1562

运动历史图 MHI MEI

运动历史图 MHI运动能量图 MEI源代码

2015-11-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除