愷风(Wei)的专栏

使用工具、了解工具、创造工具……

匆匆厦门过客

上周在厦门鼓浪屿。实在对不起大家,我又拖后腿了,路盲犯了。接一个工作电话,从照片中日光岩下来,就走丢了。我确实没有发现有岔路,顺路往下,走到门口,哪知此门非彼门,害大家找寻。看来,我的强项是原路返回。 原以为十一过后,不再人头涌涌,看那几平的高处,挤满了四方游客。从岛出来,码头上显示当时在岛人数...

2012-10-29 21:25:26

阅读数 2780

评论数 0

[原+译]VisionMobile:情景智能:你的手机能了解你多少?

VisionMobile的blog:Ambient intelligence: How well does your phone know you ? 这篇文章最大的亮点在于对隐私的看法(买椟还珠): 1、隐私的边界在变化,人们对隐私的态度在改变,新一代年青人更能容忍互联网对隐私信息的获取。 ...

2012-10-27 11:34:40

阅读数 8024

评论数 17

Khan公开课 - 统计学学习笔记:(十二)逻辑

和逻辑有关,和统计无关,估计是不同课程混了起来。 因果和相关 Eating Breakfast May Beat Teen Obesity通过持续5年时间观察2千多名青少年,提到“早餐规律进食的青少年,饱和脂肪占总卡路里比例较低,同时摄入更多的纤维”,“早餐规律者似乎比不吃早餐的更积极...

2012-10-18 17:38:06

阅读数 2078

评论数 2

Khan公开课 - 统计学学习笔记:(十一)平方之和、F统计

平方之和与自由度之和 这部分实际也是通过χ2为基础进行推导的,但是具体的数学证明不讲,可通过直观案例说明。有一个3(m)×3(n)的列阵。 共9个样本,样本均值为4,也是各组均值的均值,即mean of means。对于sum of square有:总体sum of square = 组内...

2012-10-17 15:40:47

阅读数 3562

评论数 0

Khan公开课 - 统计学学习笔记:(十)Chi-square分布

χ2分布 随机变量X是独立的标准正态分布变量,X~N(0,1),即E(X)=0, Var(X)=1。 Q1=X12,Q1是一个Chi-Square分布,记为,degree of freedom is 1 Q2=X12+ X22,Q2是一个Chi-Square分布,记为 ,degree of ...

2012-10-16 11:22:02

阅读数 9097

评论数 1

Khan公开课 - 统计学学习笔记:(九)线性回归公式,决定系数和协方差

线性回归公式推导 在坐标上分布很多点,这些点可以通过y=mx+b的直线进行近似模拟,如图。最合适的线性回归线(Best fitting regression)就是Error的方差最小,即Square error to the line: SEline最小。我们需要找寻SEline最小时m和b的值...

2012-10-14 17:37:24

阅读数 29727

评论数 2

笔记杂录:运营商 - 西班牙电信下属Giffgaff

西班牙电信下属Giffgaff giffgaff特点: 1、客服社区化,对回答使用问题的活跃用户提供激励,降低了运营商的成本,而消费者碰到问题可以得到更好的解答。 2、营销模式:引入了互联网方式的病毒营销,引入了SNS和微博 产品形态: 1、是资费套餐产品,并不涉及用户行...

2012-10-14 12:48:34

阅读数 3459

评论数 0

Khan公开课 - 统计学学习笔记:(八)样本均值之差

E(X)和Var(X)符合线性 所谓的线性,就是f(x+y)=f(x)+f(y)。概率中期望值和方差都符合线性。 X、Y为两个互不相干,即相互独立的概率变量。 如果Z=X+Y,则E(Z)=E(X+Y)=E(X)+E(Y),方差Var(Z)=Var(X+Y)=Var(X)+Var(Y)。 如...

2012-10-08 16:47:34

阅读数 4832

评论数 1

Khan公开课 - 统计学学习笔记:(七)伯努利分布、置信区间、t分布、p-value和第一型错误

伯努利分布(Bernoulli Distribution) Bernoulli Distribution是最简单的二项式分布,只有两个选择,Y or N,以0表示N,1表示Y。在日常生活中也比较常见,符合非黑即白的二元思维,例如投票预测。假设p表示Y(1)的概率,那么N(0)的概率为1-p。 ...

2012-10-06 16:26:53

阅读数 20751

评论数 0

Khan公开课 - 统计学学习笔记:(六)中心极限定理

什么是中心极限定理 中心极限定理Central Limit Theorem:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n的正态分布。 注意:原来的分布不一定要符合正态分布,可以是任何的分布,可以是离...

2012-10-04 16:39:16

阅读数 13795

评论数 2

记微博上一次“落荒而逃”

应该是在9月24日吧,我在微博上记下下面的话,然后落荒而逃 俺错了,真的错了,你永远无法和一个胡搅蛮缠的人说清楚。一个人要认为世界就那么大,那么世界对他而言就是那么大。 我看微博 微博和博客相比,我更喜欢博客,可随心所欲地写,而微博更适合灵光一闪地记录,做做个人随笔和流水帐的...

2012-10-02 15:05:26

阅读数 5841

评论数 1

Khan公开课 - 统计学学习笔记:(五)正态分布

正态分布:二项分布极好的近似 X是随机变量,E(X)是期望值。正态分布(normal distribution)也称为高斯分布(Gaussian distribution),或者钟形曲线(bell curve)。 (x-μ)/σ也称为z score(注意:z score是个通用的概念,包括...

2012-10-01 18:04:14

阅读数 15539

评论数 0

Khan公开课 - 统计学学习笔记:(四)泊松分布、大数定理

泊松分布 假设概率分布是一致的,例如不会因时间段不同而异,又假设各事件的概率是不相关的(即不相互影响),符合泊松分布Poission distribution。例如某个路口一小时内有多少量车经过。 E(X)=λ,期望值是λ。我们将计算P(X=k)时出现的概率。 如果根据二项分布进行计...

2012-10-01 17:36:17

阅读数 6650

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭