
caffe
文章平均质量分 61
flowrush
这个作者很懒,什么都没留下…
展开
-
出现“no CUDA-capable device is detected”报错解决
我是配置digits时候,按照github步骤导致cuda出了问题。错误如下:解决办法这种问题出现在cudn驱动的问题导致的,使得与显卡版本不匹配,这时候需要更新显卡驱动,重新解决一下。寻找合适的驱动版本$ ubuntu-drivers devices1 如上图,显示GTX 960M显卡建议的驱动版本是390c.安装nvidia driver$ sudo apt-get install nvidi...原创 2018-05-09 15:32:40 · 85919 阅读 · 7 评论 -
关于solver文件中test_iter和test_interval设置问题
solver.prototxt文件et: "models/bvlc_reference_caffenet/train_val.prototxt" test_iter: 100 test_interval: 1000 base_lr: 0.01 lr_policy: "step" gamma: 0.1 stepsize: 100000 display: 20 max_...转载 2018-05-30 15:37:32 · 1945 阅读 · 0 评论 -
Caffe平台下,如何调整卷积神经网络结构(修改网络结构)
以Alexnet为例 原始的Alexnet是这个样子的(页面问题只可视化部分好了): 相应的协议文件中的部分:layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_...转载 2018-06-15 20:17:39 · 3763 阅读 · 1 评论 -
Ubuntu18.04LTS下基于 Anaconda3 安装 Caffe及 Python3.6 + Pycharm + Mnist
参考博客:https://blog.csdn.net/CAU_Ayao/article/details/80578600并对部分错误修改1. 配置Anaconda31.1. 下载安装包官网下载地址:https://www.anaconda.com/download/#linux1.2. 安装下载完之后是后缀.sh文件在终端输入:bash Anaconda3...转载 2018-08-02 00:19:23 · 1220 阅读 · 1 评论 -
win10+vs2015+caffe(cpu)版本
1.首先下载官方BVLC版本的caffe ,https://github.com/BVLC/caffe/tree/windows2.CMAKE。需要3.4版本以上,我用的是3.9.6 下载地址:https://cmake.org/files/v3.9/cmake-3.9.6-win64-x64.msi3.Anaconda。目前官方的版本是Anaconda 3.6和2.7,就是说内...原创 2018-08-07 17:12:51 · 4700 阅读 · 1 评论 -
安装digits
digits是caffe的一个可视化工具,可使我们对caffe的操作变得方便容易。1).获取digits安装包DIGITS_ROOT=~/digitsgit clone https://github.com/NVIDIA/DIGITS.git $DIGITS_ROOT2).安装digits及依赖项 cd digits sudo apt-get install graphvi...原创 2018-10-13 17:34:51 · 423 阅读 · 0 评论 -
pip使用问题汇总
使用pip遇到错误ImportError: No module named packaging.version的解决方法本人Python默认是2.7,然而pip指定路径是python3.6由于需要用到pip,所以在Ubuntu上安装了一个,由于Python是2.7版本的,所以装的并不是pip3。附pip安装命令:sudo apt-get install python-pip...原创 2018-10-21 01:11:31 · 425 阅读 · 0 评论 -
digits错误
两个错误1.Cannot create Cublas handle. Cublas won't be available.Setting up scale2.ERROR: Check failed: status == CUDNN_STATUS_SUCCESS (4 vs. 0) CUDNN_STATUS_INTERNAL_ERROR网上查找原因是显卡驱动过高导致。n...原创 2018-11-07 21:47:10 · 778 阅读 · 1 评论 -
caffe solver文件个参数的意义
test_iter: 1000 //测试的批次,一次性执行全部数据,效率较低,因此分几个批次进行执行, //如果每个批次数量设为batch_size,则有以下关系:test_iter = 测试样本总数/batch_size test_interval: 1000 //测试间隔,即每训练1000次,...转载 2018-05-30 12:11:11 · 386 阅读 · 0 评论 -
caffe生成LMDB时的坑
编辑此文件,写入如下代码,并保存#!/usr/bin/env shDATA=data/re/MY=examples/myfileecho "Create train.txt..."rm -rf $MY/train.txtfor i in 3 4 5 6 7 dofind $DATA/train -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/...原创 2018-05-29 20:41:05 · 3027 阅读 · 0 评论 -
caffe笔记3(matlab程序)
引言:在caffe提供的例程当中,例如mnist与cifar10中,数据集的准备均是通过调用代码自己完成的,而对于ImageNet1000类的数据库,对于个人而言,常常面临电脑内存不足的尴尬境地。而对于应用者而言,用适合于自己条件的的数据集在caffe下训练及测试才是更重要的。所以我们有必要用自己做数据库在caffe上训练和测试。 目的:使用自己的数据集,使用caffe自带的ImageNet网络结...转载 2018-05-15 15:10:23 · 985 阅读 · 0 评论 -
caffe系列:将别人训练好的model用到自己的数据上(digits实战)
感谢作者:http://www.cnblogs.com/denny402/p/5137534.html,由于文章比较久,我在实现过程中碰到了一些问题,现在写出来分享一下。caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model。这个model将图片分为1000类,应该是目前为止最好的图片分类model了。假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张...转载 2018-05-10 15:59:45 · 659 阅读 · 0 评论 -
caffe(1)-solver文件
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下:base_lr: 0.001display: 782gamma: 0.1lr_policy: “step”max_iter: 78200momentum: 0.9snapshot: 7820snapshot_prefix: “snapshot”solver_mo...转载 2018-05-10 17:52:45 · 131 阅读 · 0 评论 -
caffe的python接口学习(1):生成配置文件
caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现。caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更加深入。半年前,我在学习CAFFE的时候,为了加深理解,因此写下了随笔,有了一系列的caffe学习文章。半年过去,很多人问到关于python接口和可视化的一些问题,现在有点空闲时间,就再次写下一些随笔...转载 2018-05-10 20:12:17 · 150 阅读 · 0 评论 -
caffe+python+mnist从图片训练到测试单张图片
原文:https://blog.csdn.net/jingkebiao4847/article/details/53925652 首页博客学院下载GitChatTinyMind论坛问答商城VIP活动招聘ITeyeCSTO ...转载 2018-05-18 10:18:41 · 2316 阅读 · 0 评论 -
caffe笔记
Caffe学习系列(2):数据层及参数要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据...转载 2018-05-13 11:43:09 · 580 阅读 · 0 评论 -
caffe实战之opencv
原文:https://blog.csdn.net/hellohaibo/article/details/77761880Caffe实战Day1-准备训练数据 1、准备数据集这一步就是想方设法搞来训练数据,可以是图像,可以是语音文件、视频等等。ok,现在假设你找到了所需的数据集(本教程就以图片为例),数据集需要进行预处理,这部分工作量比较大,需要将庞大的数据集人工分类好...转载 2018-05-21 15:52:59 · 5526 阅读 · 0 评论 -
caffe笔记2
深度学习文章2:使用MNIST数据集验证Caffe是否安装成功 使用MNIST数据集验证Caffe是否安装成功本文延续上篇博文《Caffe安装教程:Ubuntu16.04(CPU) 》,对搭建好的caffe使用MNIST数据集进行测试,可以更好的验证Caffe。1.下载数据cd ~/caffe/./data/mnist/get...转载 2018-05-15 14:41:21 · 220 阅读 · 1 评论