二分图的最大匹配

二分图的最大匹配

http://xcoder.in/blog/2012/07/maximum-matching-of-bipartite-graph.xhtml


1. 基础概念

1.1.什么是二分图

首先,我们得知道什么是二分图。关于二分图的说法网络上各种术语阐释。这里我做一个通俗的说法:

一个图分两个集合,左边集合和右边集合。左边集合的节点互不连通,右边集合的节点也互不连通,然后左边集合的节点与右边集合的节点有连通性。(如图1.1所示)

(图1.1)

1.2.什么是二分图匹配

同样,网络上、论文里都是各种术语阐释。这里我也说一个通俗的说法:

在一个二分图中,我们去掉一些边,使得每个节点最多连着一条边。(如图1.2就是图1.1的一个匹配)

(图1.2)

1.3.什么是二分图最大匹配

一个二分图可能有很多匹配边集。但是边数最多的匹配就叫最大匹配

1.4.什么是增广路

增广路又称增广轨。通俗的讲就是:

我们有两个未加入匹配的节点。我们如果能找到一条这样的路径P连通它们:

第一条边不属于匹配边集,第二条边属于匹配边集,第三条边不属于匹配边集,如是交替循环。

那么我们称这条路径P就是相对于匹配边集的增广路。

比如说我们已经有了如图1.3的匹配:

(图1.3)

那么我们找到两个未匹配的节点1和7,开始寻找路径:(1->5)不属于匹配边集,(5->2)属于匹配边集,(2->7)不属于匹配边集。那么路径P(1->5->2->7)就是相对于当前匹配的一条增广路。

2. 匈牙利算法

2.1.增广路的性质

通过上面对增广路的解释,我们可以将原有的匹配改为加上(1->5),删除(5->2),加上(2->7)。

由于增广路的性质——头边与尾边都不属于匹配集合(因为头尾节点都是未被匹配的节点),也就是说整条增广路种不属于匹配集合的边总比属于匹配集合的边多1。那么我们只需要把增广路中匹配的边变为未匹配的边,把未匹配的边变为匹配的边,这样我们就能保证新匹配比原匹配的边多1了。

2.2.匈牙利算法

匈牙利算法的基本思路就是:

从左边的集合中找一个未被匹配的点出来作为增广路的首节点,然后枚举右边的未被匹配的点,找这两个点的增广路。如果找不到增广路则已,如果找到了增广路,说明匹配边数就多了1。

下面我引用Matrix67神牛的一段关于匈牙利算法的经典通俗解释:

研究了几个小时,终于明白了。说穿了,就是你从二分图中找出一条路径来,让路径的起点和终点都是还没有匹配过的点,并且路径经过的连线是一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现。找到这样的路径后,显然路径里没被匹配的连线比已经匹配了的连线多一条,于是修改匹配图,把路径里所有匹配过的连线去掉匹配关系,把没有匹配的连线变成匹配的,这样匹配数就比原来多1个。不断执行上述操作,直到找不到这样的路径为止。

2.3.代码实现

其代码实现主要是通过一个枚举左边集合的边,然后每次枚举都对其DFS一遍找增广路。

/** 注意下标从1开始 */
/**
 * map数组即一个连通性数组
 * vis数组是在某次找增广路的时候右边的某个点有没有被访问过
 * match数组即右边的点对应匹配左边的点的编号
 */
bool map[MAXN][MAXN], vis[MAXN];
int match[MAXN];

bool dfs(int v, int n)
{
    /** 枚举右边的点 */
    for(int i = 1; i <= n; i++)
    {
        /** 如果这次增广路寻找右边的这个点没被访问,且与左边的v连通 */
        if(!vis[i] && map[v][i])
        {
            vis[i] = true;

            /**
             * dfs(match[i], n):右边的i点的匹配顶点为match[i]
             * 说明这条边是匹配边,那么我们往下搜看看能不能完成增广路
             * 如果能完成增广路,则我们将i点的匹配顶点修改为v
             * 如果match[i]为0则说明i点是未被匹配的点
             * 那么将i点的匹配顶点修改为v
             * 这段代码完成了“匹配->未匹配”交替搜索
             */
            if(dfs(match[i], n) || !match[i])
            {
                match[i] = v;
                return true;
            }
        }
    }

    return false;
}

void max_match(int m, int n)
{
    memset(match, 0, sizeof(match));

    /** 枚举左边的点 */
    for(int i = 1; i <= m; i++)
    {
        /** 重新初始化vis */
        memset(vis, 0, sizeof(vis));

        /** 对左边的i点搜增广路 */
        dfs(i, n);
    }
}

3. 二分图最大匹配的一些性质

3.1.最小点覆盖数 = 最大匹配数

详见http://www.matrix67.com/blog/archives/116

3.2.最小路径覆盖 = 顶点数 – 最大匹配数

路径覆盖就是说在图中找一些路径,使之覆盖图中所有顶点,且任何一个顶点都只在一个路径集合中。如果不考虑图中回路的存在,那么每条路径就是一个弱连通子集。

最小路径覆盖就是找出最少的路径数量,使其成为图的一个路径覆盖。

3.3.最大独立集 = 顶点数 – 最大匹配数

独立集:二分图的一个顶点集合,这个集合中任意两个顶点都不相连。

最大集合:使独立集中顶点数最多。

4. 题目推荐

POJ3041 http://poj.org/problem?id=3041

一个激光炮能射掉一行里的所有小行星,或者一列里的所有小行星。问要射掉所有小行星最少需要几次射击。

我们将x坐标与y坐标设为二分图的两个顶点集。若一个小行星的坐标为(X, Y),则我们将左顶点集的X与右顶点集的Y连通。那么我们只需要求出最小顶点覆盖,即最大匹配数。

HDU2063 http://acm.hdu.edu.cn/showproblem.php?pid=2063

有N个女生M个男生。女生心目中有几个中意的partner。但是显然一个男生只能属于一个女生。那么问最多有几个女生能有partner?

女生一个集合,男生一个集合,求最大匹配数即可。


 

 

什么是二分图,什么是二分图的最大匹配,这些定义我就不讲了,网上随便都找得到。二分图的最大匹配有两种求法,第一种是最大流(我在此假设读者已有网络流的知识);第二种就是我现在要讲的匈牙利算法。这个算法说白了就是最大流的算法,但是它跟据二分图匹配这个问题的特点,把最大流算法做了简化,提高了效率。匈牙利算法其实很简单,但是网上搜不到什么说得清楚的文章。所以我决定要写一下。
最大流算法的核心问题就是找增广路径(augment path)。匈牙利算法也不例外,它的基本模式就是:

初始时最大匹配为空
while 找得到增广路径
do 把增广路径加入到最大匹配中去

可见和最大流算法是一样的。但是这里的增广路径就有它一定的特殊性,下面我来分析一下。
(注:匈牙利算法虽然根本上是最大流算法,但是它不需要建网络模型,所以图中不再需要源点和汇点,仅仅是一个二分图。每条边也不需要有方向。)

图1图2


图1是我给出的二分图中的一个匹配:[1,5]和[2,6]。图2就是在这个匹配的基础上找到的一条增广路径:3->6->2->5->1->4。我们借由它来描述一下二分图中的增广路径的性质:

(1)有奇数条边。
(2)起点在二分图的左半边,终点在右半边。
(3)路径上的点一定是一个在左半边,一个在右半边,交替出现。(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连,不要忘记哦。)
(4)整条路径上没有重复的点。
(5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。(如图1、图2所示,[1,5]和[2,6]在图1中是两对已经配好对的点;而起点3和终点4目前还没有与其它点配对。)
(6)路径上的所有第奇数条边都不在原匹配中,所有第偶数条边都出现在原匹配中。(如图1、图2所示,原有的匹配是[1,5]和[2,6],这两条配匹的边在图2给出的增广路径中分边是第2和第4条边。而增广路径的第1、3、5条边都没有出现在图1给出的匹配中。)
(7)最后,也是最重要的一条,把增广路径上的所有第奇数条边加入到原匹配中去,并把增广路径中的所有第偶数条边从原匹配中删除(这个操作称为增广路径的取反),则新的匹配数就比原匹配数增加了1个。(如图2所示,新的匹配就是所有蓝色的边,而所有红色的边则从原匹配中删除。则新的匹配数为3。)

不难想通,在最初始时,还没有任何匹配时,图1中的两条灰色的边本身也是增广路径。因此在这张二分图中寻找最大配匹的过程可能如下:

(1)找到增广路径1->5,把它取反,则匹配数增加到1。
(2)找到增广路径2->6,把它取反,则匹配数增加到2。
(3)找到增广路径3->6->2->5->1->4,把它取反,则匹配数增加到3。
(4)再也找不到增广路径,结束。

当然,这只是一种可能的流程。也可能有别的找增广路径的顺序,或者找到不同的增广路径,最终的匹配方案也可能不一样。但是最大匹配数一定都是相同的。

对于增广路径还可以用一个递归的方法来描述。这个描述不一定最准确,但是它揭示了寻找增广路径的一般方法:
“从点A出发的增广路径”一定首先连向一个在原匹配中没有与点A配对的点B。如果点B在原匹配中没有与任何点配对,则它就是这条增广路径的终点;反之,如果点B已与点C配对,那么这条增广路径就是从A到B,再从B到C,再加上“从点C出发的增广路径”。并且,这条从C出发的增广路径中不能与前半部分的增广路径有重复的点。

比如图2中,我们要寻找一条从3出发的增广路径,要做以下3步:
(1)首先从3出发,它能连到的点只有6,而6在图1中已经与2配对,所以目前的增广路径就是3->6->2再加上从2出发的增广路径。
(2)从2出发,它能连到的不与前半部分路径重复的点只有5,而且5确实在原匹配中没有与2配对。所以从2连到5。但5在图1中已经与1配对,所以目前的增广路径为3->6->2->5->1再加上从1出发的增广路径。
(3)从1出发,能连到的不与自已配对并且不与前半部分路径重复的点只有4。因为4在图1中没有与任何点配对,所以它就是终点。所以最终的增广路径是3->6->2->5->1->4。

但是严格地说,以上过程中从2出发的增广路径(2->5->1->4)和从1出发的增广路径(1->4)并不是真正的增广路径。因为它们不符合前面讲过的增广路径的第5条性质,它们的起点都是已经配过对的点。我们在这里称它们为“增广路径”只是为了方便说明整个搜寻的过程。而这两条路径本身只能算是两个不为外界所知的子过程的返回结果。
显然,从上面的例子可以看出,搜寻增广路径的方法就是DFS,可以写成一个递归函数。当然,用BFS也完全可以实现。

至此,理论基础部份讲完了。但是要完成匈牙利算法,还需要一个重要的定理:

如果从一个点A出发,没有找到增广路径,那么无论再从别的点出发找到多少增广路径来改变现在的匹配,从A出发都永远找不到增广路径。

要用文字来证明这个定理很繁,话很难说,要么我还得多画一张图,我在此就省了。其实你自己画几个图,试图举两个反例,这个定理不难想通的。(给个提示。如果你试图举个反例来说明在找到了别的增广路径并改变了现有的匹配后,从A出发就能找到增广路径。那么,在这种情况下,肯定在找到别的增广路径之前,就能从A出发找到增广路径。这就与假设矛盾了。)
有了这个定理,匈牙利算法就成形了。如下:

初始时最大匹配为空
for 二分图左半边的每个点i
do 从点i出发寻找增广路径。如果找到,则把它取反(即增加了总了匹配数)。

如果二分图的左半边一共有n个点,那么最多找n条增广路径。如果图中共有m条边,那么每找一条增广路径(DFS或BFS)时最多把所有边遍历一遍,所花时间也就是m。所以总的时间大概就是O(n * m)。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值