FL Studio时间标记和重复标记

打开FL Studio音乐编曲制作软件的播放列表窗口,鼠标左键展开该窗口左上角的播放列表选项菜单,我们可以看到该菜单中包含的所有子菜单。从上往下看大概中间往下一点的位置我们就可以看到本节课要讲的时间标记菜单了。关于它更详细的信息小编将在下文为大家逐一讲解,感兴趣的小伙伴就一起来看看吧!

我们点击“时间标记”命令后随即会弹出又一个菜单,选择该菜单中“添加一个”命令,我们将看见如下图所示的窗口:

处理图片素材

在这里我们可以为我们的标记名称取上合适的名字,点击“勾号”即可,如果想要取消该窗口只需点击“叉号”。下图是小编添加好的时间标记:

处理图片素材

时间标记的位置我们是可以修改的,只需将鼠标移动到该标记的左边缘当鼠标变成双箭头状的时候就可以移动该标记的位置。

如果我们的播放列表上已经添加有时间标记,此刻要想添加其他的时间标记,我们只需在标尺其他空白的地方右击鼠标,会弹出一个快捷菜单,可以选择其中的“添加标记”或“放置歌曲循环”命令添加相应的命令。如下图操作:

处理图片素材

我们还可以在已有的标记上继续操作,在该标记上鼠标点击右键我们依旧可以看到一个快捷菜单,通过该菜单我们可以实现更多的操作。使用删除命令我们可以删除时间标记;使用重命名则可以给该标记修改名称;通过左移内容和右移内容命令可以将标记区域的内容移动到下一个标记区域的左边或者右边;还可以通过无、循环、跳过、暂停、歌曲开始、歌曲循环命令将标记设置为不同类型。

处理图片素材

接下来我们就来看看各种标记类型的说明。

无,它是个普通的标记没有什么其他效果,只作提示标签用;

循环,当要播放到下一个标记的时候就会重新跳回到循环标记实现循环播放;

跳过,播放时跳过这个标记从下一个标记开始;

暂停,播放到这个标记会暂停播放,除非前面是循环标记;

歌曲开始,标记歌曲的开始位置,这表明了FL Studio导出时从什么位置开始导出;

歌曲循环,播放到播放列表中所有数据末尾后会跳转到该标记处继续循环播放;


转载于:http://www.flstudiochina.com/faq/fl-Resign.html

在Visual Studio 2019开发环境中,通过C#语言集成Emgu.CV库来部署使用yolov7-darknet模型进行实时图像识别,是一个复杂但非常实用的技能。为了帮助你更好地掌握这一技能,我推荐你参考《C#集成Emgu.CV部署yolov7-darknet模型教程》。这份资源详细地指导了如何将深度学习模型部署到C#应用程序中,并且能够高效地进行图像识别任务。 参考资源链接:[C#集成Emgu.CV部署yolov7-darknet模型教程](https://wenku.csdn.net/doc/60ezkf6qbx) 首先,确保你的开发环境已经安装了.NET Framework 4.7.2,Visual Studio 2019以及Emgu.CV库。然后,下载yolov7-darknet模型的权重文件配置文件,这些是模型进行预测的基础。 接下来,使用Emgu.CV库加载预训练的yolov7-darknet模型。Emgu.CV提供了很多工具来处理图像执行计算机视觉任务,你可以通过它来加载模型、读取图像、执行前向传播以及解析模型的输出。 具体来说,你需要初始化一个深度神经网络对象,并加载yolov7-darknet模型的权重配置文件。之后,对于每一帧图像,你需要将其转换为模型需要的格式,然后将图像传递给模型进行推断。推断结果通常包含了检测到的对象的类别位置信息,你需要进一步处理这些信息来实现可视化的识别结果。 完成集成后,你可以在C#程序中构建一个循环来捕获实时视频流(例如来自摄像头),并对每一帧图像执行识别操作。处理后的图像可以显示在窗口中,标记出识别到的对象。 根据这份教程,你将能够完成整个集成部署流程,并且在实际项目中应用yolov7-darknet模型来实现高效的图像识别功能。掌握了这个过程之后,如果你还想深入了解模型的内部原理、优化部署流程或探索更多图像识别技术,你可以继续参考《C#集成Emgu.CV部署yolov7-darknet模型教程》。这份资源不仅提供了完整的技术实现,还包含了对高级概念的解释扩展知识,帮助你在图像识别机器学习领域不断深入探索。 参考资源链接:[C#集成Emgu.CV部署yolov7-darknet模型教程](https://wenku.csdn.net/doc/60ezkf6qbx)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值