深度学习
文章平均质量分 89
星未漾~
广东某985在读硕士一枚,入坑不久,请多指教
展开
-
【Opencv图像处理之文档扫描OCR识别】
本文识别案例图片如下图。这个过程中涉及图像预处理、边缘检测、透视变换等,后续章节中将对OCR的整个过程进行概述。编辑环境:Python 3.6.3 + Opencv 3.4.1.15 + Pycharmps:转载请标明原文出处!原创 2023-07-20 13:50:31 · 1468 阅读 · 0 评论 -
【Opencv图像处理之基于模板匹配信用卡数字识别任务】
在现代社会中,我们可能会面临需要手动输入信用卡号码的情况,这不仅费时费力,还存在输入错误的风险。因此,自动识别信用卡上的数字成为一个重要且有趣的任务(如下图,如果能自动识别出来该卡号为4000 1234 5678 9010,则会大大提高我们的效率)。本文将探讨如何利用OpenCV库中的图像处理函数来预处理信用卡图像,以准备进行数字提取。介绍了包括图像去噪、边缘检测、轮廓提取等技术以求在图像中准确地定位信用卡数字。此外,还介绍了数字识别的关键步骤,即基于模板匹配的方法来识别数字。ps:转载请标明原文出处。原创 2023-06-08 09:36:29 · 1090 阅读 · 1 评论 -
【报错解决:基于Anaconda的Opencv环境配置(conda版本、python版本报错)】
报错解决:基于Anaconda的Opencv环境配置(conda版本、python版本报错)原创 2023-05-08 17:28:30 · 1304 阅读 · 0 评论 -
【Pytorch框架flask部署简单例子—图像识别分类】
本文介绍了Flask部署pytorch框架的例子,简单易上手,代码和数据集齐全!原创 2023-04-29 08:10:55 · 1424 阅读 · 0 评论 -
【PyTorch自定义Dataloader步骤解析】
PyTorch是目前最受欢迎的深度学习框架之一,其中的DataLoader是用于在训练和验证过程中加载数据的重要工具。然而,PyTorch自带的DataLoader不能完全满足用户需求,有时需要用户自定义DataLoader。本文介绍了如何使用PyTorch创建自定义DataLoader,包括数据集类、数据增强和加载器等方面的实现方法,旨在帮助读者深入了解PyTorch中DataLoader的使用,掌握自定义DataLoader的技巧,更好地适应实际项目的需求。原创 2023-04-14 16:59:41 · 2338 阅读 · 2 评论 -
【基于PyTorch实现经典网络架构的花卉图像分类模型】
本文基于PyTorch框架,使用经典的卷积神经网络(CNN)架构,对花卉图像进行分类任务。我们介绍了如何使用PyTorch实现ResNet的CNN网络架构。我们还展示了如何通过微调预训练模型来提高模型的准确性,并介绍了如何使用PyTorch内置的数据增强和数据加载功能来预处理和加载数据。通过本文的学习,读者可以了解到如何使用PyTorch框架来实现图像分类任务,原创 2023-04-11 15:29:08 · 1620 阅读 · 1 评论 -
【PyTorch如何实现CPU、GPU相互转换?】
PyTorch如何实现CPU、GPU相互转换?三种方法:定义device对象,.cuda方法,.cpu方法原创 2023-04-06 21:58:42 · 5174 阅读 · 1 评论 -
【Deep Learning笔记之卷积神经网络的架构】
卷积神经网络的架构原创 2023-04-01 16:18:02 · 258 阅读 · 0 评论 -
【哪个卷积核更优呢?3个3×3小卷积核or大卷积核?】
哪个卷积核更优呢?3个3×3小卷积核or大卷积核?原创 2023-04-01 15:49:52 · 684 阅读 · 0 评论