Machine Learning
量子孤岛
90后嵌入式工程师,喜欢写作、读书。希望通过文字和大家共同进步!
展开
-
CS229笔记之单变量线性回归
监督学习:data set每一个样本都有相应的正确答案,再根据样本做预测SVM:处理无限多特征单变量线性回归:①Hypothesis: ②Parameters:③Cost Function:④Goal:对于大多数线性回归,平方误差函数是合理的 cost function 每个点对应假设函数的斜率方程 ...原创 2018-08-16 20:27:52 · 199 阅读 · 0 评论 -
通过感知机的对偶形式了解Gram矩阵
格拉姆矩阵可以看做feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature map中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像...原创 2018-08-22 15:02:05 · 1391 阅读 · 0 评论 -
构建机器学习解决方案的过程
熟悉任务和数据我想要回答的问题是什么?已经收集到的数据能够回答这个问题吗?要将我的问题表示成机器学习问题,用哪种方法最好?我收集的数据是否足够表达我想要解决的问题?我提取了数据的哪些特征?这些特征能否实现正确的预测?如何衡量应用是否成功?机器学习解决方案与我的研究或商业产品中的其他部分是如何相互影响的?从更大的层面来看,机器学习算法和方法只是解决特定问题的过程中的一部分,一定要...原创 2018-12-31 08:35:50 · 630 阅读 · 0 评论 -
鸢尾花分类
鸢尾花分类load dataset鸢尾花数据是机器学习和统计学中经典的数据集,包含在scikir-learn的datasets中,使用load_iris函数加载数据from sklearn.datasets import load_irisiris_dataset = load_iris()print("Keys of iris_dataset: \n{}".format(iris_...原创 2019-07-12 18:15:11 · 1376 阅读 · 0 评论 -
Scikit-learn
项目过程导包——加载数据——数据预处理——选择算法训练数据——测试数据——将测试结果导入.csv中数据预处理删除无关特征:如用户ID,训练集和测试集都要删除将文本数据进行数值化:数据包含很多文本信息,需要将其转换成模型需要的类型填充缺失值:unknown样本需要填充进行特征与预测结果的探索性分析:查看各个特征对最后的预测结果影响,进而对特征进行选择算法选择二分类算法包括:逻...原创 2019-08-02 13:47:25 · 146 阅读 · 0 评论