题意:
一块面积为a的长方形毯子,最小的边长为b,求最小边长大于等于b的长方形方案数。
题目条件:
1<=b<=a<=1e12
分析:
由题目给出的样例可以不难发现,实际上是要求一对约数中最小约数大于等于b的约数对数。再看到题目条件范围,可以直接对a进行质因数分解,试除法复杂度O(根号n),这里直接埃式素数打表,范围1e6差不多。然后就是对a进行唯一素数分解,利用约数个数的公式(r1+1)*(r2+1)…(rm+1),然后因为一对约数中,较小的约数范围实在1~根号a,那么我们只需除掉小于等于根号a的质因数,剩下的如果还是大于1的话,说明剩下的是大于根号a的质因数,而该质因数若是次数高于一次的话,根号a绝对会大于等于该质因数,所以如果将小于等于根号a的质因数都除完,剩下的一定是次数为一次的大于根号a的质因数,然后我们就可以判断如果最后a==1,将sum/=2即可,sum表示a的所有约数个数的一半,那么只需减去小于b的约数个数即可得到最终答案。需要特判b>根号a的时候直接输出0(b不是一对约数中较小的约数)。
主要代码
VI primes(1e6+10),v(1e6+10);
int cnt=0;
void Ai_prime(){
for(int i=2;i<=1e6;i++){
if(!v[i])
primes[cnt++]=i,v[i]=1;
else
continue;
for(int j=i;j<=1e6/i;j++){
v[j*i]=1;
}
}
}
int cases=1;
void solve(){
ll a,b,ans=0;
cin>>a>>b;
ll temp=a;
if(b>sqrt(a))
ans=0;
else{
ll sum=1;
for(int i=0;i<cnt&&primes[i]<=sqrt(a);i++){
int c=0;
while(a%primes[i]==0){
a/=primes[i];
c++;
}
if(c)
sum*=c+1;
}
if(a==1)
sum/=2;
ans+=sum;
for(int i=1;i<b;i++)
if(temp%i==0)
ans--;
}
cout<<"Case "<<cases++<<": "<<ans<<endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
Ai_prime();
int t;
cin>>t;
while(t--){
solve();
}
return 0;
}