Light OJ1341--Aladdin and the Flying Carpet(素数筛选,约数个数,唯一分解定理)

本文介绍了一种算法,通过质因数分解解决一个数学问题:给定长方形毯子的面积和最小边长,求解最小边长大于等于给定值的长方形方案数。算法首先进行质因数分解,利用约数个数的公式计算可能的方案数,再排除不符合条件的方案,特别处理了当最小边长大于根号面积的情况。
摘要由CSDN通过智能技术生成

题目链接

题意:
一块面积为a的长方形毯子,最小的边长为b,求最小边长大于等于b的长方形方案数。

题目条件:
1<=b<=a<=1e12

分析:
由题目给出的样例可以不难发现,实际上是要求一对约数中最小约数大于等于b的约数对数。再看到题目条件范围,可以直接对a进行质因数分解,试除法复杂度O(根号n),这里直接埃式素数打表,范围1e6差不多。然后就是对a进行唯一素数分解,利用约数个数的公式(r1+1)*(r2+1)…(rm+1),然后因为一对约数中,较小的约数范围实在1~根号a,那么我们只需除掉小于等于根号a的质因数,剩下的如果还是大于1的话,说明剩下的是大于根号a的质因数,而该质因数若是次数高于一次的话,根号a绝对会大于等于该质因数,所以如果将小于等于根号a的质因数都除完,剩下的一定是次数为一次的大于根号a的质因数,然后我们就可以判断如果最后a==1,将sum/=2即可,sum表示a的所有约数个数的一半,那么只需减去小于b的约数个数即可得到最终答案。需要特判b>根号a的时候直接输出0(b不是一对约数中较小的约数)。

主要代码

VI primes(1e6+10),v(1e6+10);
int cnt=0;
void Ai_prime(){
	for(int i=2;i<=1e6;i++){
		if(!v[i])
		primes[cnt++]=i,v[i]=1;
		else
		continue;
		for(int j=i;j<=1e6/i;j++){
			v[j*i]=1;
		}
	}
}
int cases=1;
void solve(){
	ll a,b,ans=0;
	cin>>a>>b;
	ll temp=a;
	if(b>sqrt(a))
	ans=0;
	else{
		ll sum=1;
		for(int i=0;i<cnt&&primes[i]<=sqrt(a);i++){
			int c=0;
			while(a%primes[i]==0){
				a/=primes[i];
				c++;
			}
			if(c)
			sum*=c+1;
		}
		if(a==1)
		sum/=2;
		ans+=sum;
		for(int i=1;i<b;i++)
		if(temp%i==0)
		ans--;
	}
	cout<<"Case "<<cases++<<": "<<ans<<endl;
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	Ai_prime();
	int t;
	cin>>t;
	while(t--){
		solve();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值