校园招聘与社会招聘在多个方面存在显著的区别,这些区别主要体现在招聘对象、招聘目的、招聘方式、招聘周期、招聘成本以及入职后的发展等方面。校招也更注重理论知识,俗称八股文,其实有些东西为什么一直拿来问,其实这里面你仔细品,这里面是蕴含大量知识的。
一、招聘对象的不同
- 校园招聘:主要面向应届生或毕业1-2年内的学生。这些学生通常缺乏实际工作经验,但具有较高的培养潜力和可塑性。企业通过校园招聘来选拔并培养未来的管理者和核心员工。
- 社会招聘:则主要面向有正式工作经验的人群。这些应聘者通常已经具备了一定的工作技能和经验,能够迅速适应并胜任岗位要求。
二、招聘目的的不同
- 校园招聘:企业通常是为了进行人才队伍的储备,特别是为管培生等岗位做准备。这些岗位旨在培养未来的管理者,通过早期的投资和培养,避免公司在快速发展过程中出现的管理岗位空缺。
- 社会招聘:则更多是为了填补某个具体岗位的人员空缺。企业需要在短时间内找到具备相关工作经验和技能的应聘者,以快速恢复岗位的正常运作。
三、招聘方式的不同
- 校园招聘:企业通常会采用前往各院校现场招聘的形式,通过宣讲会、招聘会等方式向学生全面介绍企业文化、发展前景和岗位信息,并即时进行面试和发放offer。这种方式效率较高,能够吸引大量应届生的关注。
- 社会招聘:则主要通过各大招聘网站、人才市场以及猎头公司等渠道进行招聘。企业会发布岗位信息,并对应聘者进行简历筛选、面试等环节。由于应聘者数量较多且背景复杂,招聘周期相对较长。
四、招聘周期和成本的不同
- 校园招聘:每年时间比较固定,主要集中在春季(三四月份)和秋季(九到十二月份)。由于需要面向大量应届生进行招聘,因此校园招聘的预算通常较高,包括宣讲会、招聘会等活动的组织和宣传费用。
- 社会招聘:则是根据企业的全年招聘计划和临时性需求进行招聘。由于应聘者数量较多且背景复杂,招聘周期相对较长,但整体成本相对较低(除非通过猎头公司进行招聘)。
五、入职后发展的不同
- 校园招聘:新员工通常会接受较长时间的新员工培训,包括企业文化宣导、工作方法培训和项目体验等。企业会投入大量资源帮助校招生融入职场并快速成长。此外,很多公司还会为校招生提供轮岗制度等机会,帮助他们选择适合自己的职业方向。
- 社会招聘:新员工则可能面临较短的培训期甚至直接上岗工作的情况。由于社招员工已经具备了一定的工作经验和技能,因此企业更多地关注其是否能够迅速适应岗位并创造价值。当然,对于高级别岗位或关键岗位的员工,企业也会提供相应的支持和培训机会。
综上所述,校园招聘与社会招聘在多个方面存在显著差异。企业在选择招聘方式时需要根据自身需求和实际情况进行综合考虑。
HashMap基础
Java中的HashMap
是Java集合框架的一部分,它实现了Map
接口。HashMap
存储键值对(key-value pairs),其中每个键都映射到最多一个值。HashMap
不保证映射的顺序;特别是,它不保证该顺序会随着时间的推移保持不变。
主要特点
- 不保证顺序:
HashMap
不保证映射的顺序,这意味着当你遍历HashMap
时,元素的顺序可能与插入时的顺序不同。 - 允许null键和null值:与
Hashtable
不同,HashMap
允许使用null
作为键和值。但是,HashMap
最多只能有一个null
键,因为键是唯一的。 - 不同步:
HashMap
不是同步的。如果多个线程同时访问一个HashMap
实例,并且至少有一个线程从结构上修改了映射,那么它必须保持外部同步。这通常通过对自然封装该映射的对象进行同步操作来完成。如果不存在这样的对象,则应该使用Collections.synchronizedMap
方法将映射包装在同步包装器中。最好在创建时完成此操作,以防止对映射进行意外的非同步访问。 - 基于哈希表的Map接口的实现:
HashMap
通过哈希表实现,这意味着它使用哈希码来快速查找、插入和删除键值对。
示例
以下是一个简单的HashMap
示例,展示了如何创建HashMap
、添加键值对、访问值以及遍历HashMap
。
import java.util.HashMap;
import java.util.Map;
public class HashMapExample {
public static void main(String[] args) {
// 创建一个HashMap实例
HashMap<String, Integer> map = new HashMap<>();
// 向HashMap中添加键值对
map.put("Apple", 100);
map.put("Banana", 200);
map.put("Cherry", 150);
// 访问HashMap中的值
System.out.println("Value of Apple: " + map.get("Apple"));
// 遍历HashMap
for (Map.Entry<String, Integer> entry : map.entrySet()) {
System.out.println("Key = " + entry.getKey() + ", Value = " + entry.getValue());
}
// 使用Java 8的forEach和lambda表达式遍历
map.forEach((key, value) -> System.out.println("Key = " + key + ", Value = " + value));
}
}
注意事项
- 当选择键时,应该避免使用可变对象,或者确保在用作键的对象的生命周期中,它的哈希码不会改变,因为这会破坏
HashMap
的内部结构,导致不可预测的行为。 HashMap
的初始容量和加载因子(load factor)会影响其性能。容量是哈希表中桶(bucket)的数量,初始容量只是哈希表在创建时的容量。加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超过了加载因子与当前容量的乘积时,哈希表会进行rehash操作(即重建内部数据结构),以便增加哈希表的容量。默认初始容量为16,加载因子为0.75。在创建HashMap
时,可以通过构造函数指定这些值。
为什么转化为红黑树的阈值8
在Java的HashMap
实现中,将链表转化为红黑树的阈值设定为8,这一设计决策是基于一系列复杂的考虑因素,主要可以归纳为以下几个方面:
1. 泊松分布原理
这一阈值的选择与泊松分布这一统计学原理密切相关。泊松分布阐明了在单位时间(或面积、体积)内,随机事件的平均发生次数遵循一定的概率分布。在哈希表中,可以将哈希桶视为单位面积,插入操作视为一系列随机事件,每个事件代表将一个Key映射到哈希桶内。通过泊松分布的概率方程,可以计算出哈希桶内元素数量的概率分布。当λ(即平均每个桶内的元素数量)设定为0.5时,计算出桶内元素数量为8的概率极低,这意味着在大多数情况下,桶内的元素数量不会达到8。因此,当链表长度超过8时,可以认为哈希冲突已经较为频繁,此时将链表转换为红黑树是合理的,以便在保持查询效率的同时,减少哈希冲突带来的性能损失。
2. 性能和内存占用的平衡
红黑树是一种自平衡的二叉搜索树,其插入、删除和查找操作的最坏时间复杂度都是O(logN)。在哈希冲突较为频繁的情况下,使用红黑树可以显著提高查询效率。然而,红黑树节点的大小通常比链表节点大,因此会占用更多的内存。将链表转换为红黑树的阈值设定为8,是一个经验性的选择,旨在在性能和内存占用之间达到平衡。这个阈值的选择是基于一系列实验和性能测试得出的,它考虑了哈希冲突的发生频率、链表长度的影响以及红黑树的性能等多个因素。
3. 避免过早转换
如果链表转换为红黑树的阈值设置得太低,那么可能会因为少量的哈希冲突就导致链表转换为红黑树,这不仅会增加内存占用,还可能因为频繁的转换操作而降低性能。将阈值设定为8,可以确保在链表长度较长且哈希冲突较为频繁时再进行转换,从而避免过早的转换和不必要的性能开销。
4. 扩容因子的影响
HashMap
的扩容因子默认为0.75,这一设置也影响了链表转换为红黑树阈值的选择。扩容因子决定了HashMap在何时进行扩容操作,以维持合适的容器大小。在扩容因子为0.75的情况下,通过泊松分布的计算可以得出,平均每个桶内的元素数量期望值约为0.5(忽略方差的情况下)。这一期望值与链表转换为红黑树的阈值选择密切相关,因为它反映了在扩容前桶内元素的平均分布情况。
综上所述,HashMap
中将链表转化为红黑树的阈值设定为8,是基于泊松分布原理、性能和内存占用的平衡、避免过早转换以及扩容因子的影响等多个因素的综合考虑。这一设计决策旨在在保持高效查询性能的同时,减少内存占用和不必要的性能开销。
转化为链表的阈值6
在Java的HashMap
实现中,将红黑树转化回链表的阈值设定为6,这一设计决策同样基于多个因素的考虑,主要包括性能优化、内存占用的减少以及避免不必要的结构转换。以下是详细解释:
1. 性能优化
- 查找效率:红黑树是一种自平衡的二叉搜索树,其查找效率通常比链表高,特别是对于大量元素的场景。然而,当红黑树中的节点数量减少到一定程度时,其性能优势可能不再明显,甚至可能由于树结构的维护开销而降低性能。
- 转换开销:将红黑树转换回链表是一个相对简单的操作,不涉及复杂的树结构维护。相比之下,将链表转换为红黑树需要更多的计算和资源开销。因此,在节点数量较少时,保持链表结构可以减少不必要的转换开销。
2. 内存占用的减少
- 节点大小:红黑树的节点通常比链表节点包含更多的信息和指针(如父节点指针、左右子节点指针以及颜色信息等),因此会占用更多的内存。在节点数量较少时,使用链表可以减少内存占用。
- 空间利用率:当HashMap中的元素数量减少时,通过将红黑树转换回链表,可以更好地利用空间,避免不必要的内存浪费。
3. 避免不必要的结构转换
- 动态调整:
HashMap
会根据其内部元素的数量动态调整其结构。当元素数量增加时,可能会触发扩容操作或链表到红黑树的转换;当元素数量减少时,则可能触发红黑树到链表的转换。设置合理的转换阈值可以避免因元素数量的微小变化而导致的频繁结构转换。 - 稳定性:稳定的数据结构有助于提高程序的稳定性和可预测性。通过设定合理的转换阈值,可以确保
HashMap
在大多数情况下保持其数据结构的稳定性。
阈值选择的原因
- 实验和性能测试:这个阈值的选择是基于大量的实验和性能测试得出的。开发者通过模拟不同的使用场景和负载情况,测试了不同阈值对
HashMap
性能的影响,最终选择了6作为将红黑树转换回链表的阈值。 - 平衡考虑:这个阈值的选择旨在在性能和内存占用之间找到一个平衡点。一方面,它确保了当节点数量较少时,使用链表可以提高性能和减少内存占用;另一方面,它也避免了因节点数量过少而导致的红黑树结构维护开销。
综上所述,将红黑树转化回链表的阈值设定为6是Java HashMap
实现中的一个重要设计决策,它基于性能优化、内存占用的减少以及避免不必要的结构转换等多个因素的考虑。
HashMap 的长度为什么是2的幂次方
HashMap的长度选择为2的幂次方,主要是基于以下几个方面的考虑:
1. 快速计算索引
HashMap使用哈希码(hashCode)来计算元素在数组中的索引。当数组长度为2的幂次方时,可以使用位运算(&操作)来替代取模运算(%),从而提高计算效率。具体来说,索引的计算公式为hashCode & (length - 1)
。由于length
是2的幂次方,length - 1
的二进制表示中所有低位都是1,这使得位运算能够高效地计算出索引值。
2. 均匀分布元素
当数组长度为2的幂次方时,HashMap能够更均匀地分布元素,减少哈希冲突的概率。由于hashCode & (length - 1)
的操作,哈希码的低几位将决定元素在数组中的位置。由于length - 1
的二进制表示中所有低位都是1,这保证了哈希码的低几位能够充分利用,使得元素能够更均匀地分布在数组中。
3. 扩容效率
当HashMap需要扩容时,如果原数组长度为2的幂次方,那么扩容后的新数组长度也必然是2的幂次方(通常是原长度的两倍)。这种设计使得扩容过程中能够高效地重新计算元素的索引,而不需要重新计算哈希码。具体来说,扩容后的索引计算可以通过(oldIndex | oldCap)
来实现,其中oldIndex
是元素在旧数组中的索引,oldCap
是旧数组的长度(即2的幂次方)。这种操作能够快速地计算出元素在新数组中的位置,提高了扩容的效率。
4. 减少空间浪费
如果HashMap的长度不是2的幂次方,那么在计算索引时可能会出现空间浪费的情况。例如,如果长度为15(二进制表示为1111),那么length - 1
的二进制表示为1110,这意味着哈希码的最后一位为0的元素将永远无法存储在数组的某些位置上(即二进制表示中最后一位为1的位置),从而导致空间浪费。而当长度为2的幂次方时,length - 1
的二进制表示中所有低位都是1,避免了这种情况的发生。
综上所述,HashMap选择长度为2的幂次方是为了提高计算效率、均匀分布元素、提高扩容效率以及减少空间浪费。这些优势使得HashMap在Java集合框架中成为了一个高效且广泛使用的数据结构。
如果给定初始化hashmap大小为50,那么初始化要多大
在Java的HashMap
实现中,当你尝试通过构造函数显式地指定一个初始容量(如50)时,实际上HashMap
内部会寻找一个大于或等于这个指定容量的最小的2的幂次方数作为实际的初始容量。这是因为HashMap
的设计就是基于数组的长度为2的幂次方这一特性来优化哈希码的计算和元素的分布的。
对于你给出的初始化大小为50的情况,HashMap
会选择一个大于50的最小的2的幂次方数作为实际的初始容量。在这个例子中,这个数是64(2的6次方)。
因此,如果你尝试创建一个初始容量为50的HashMap
,它实际上会使用64作为初始容量。
这里是一个简单的示例代码:
import java.util.HashMap;
public class Main {
public static void main(String[] args) {
HashMap<Integer, String> map = new HashMap<>(50);
System.out.println("Initial capacity: " + map.initialCapacity()); // 这将输出64,而不是50
}
}
但是,需要注意的是,HashMap
类并没有直接提供一个initialCapacity()
方法来获取实际的初始容量。上面的initialCapacity()
调用只是为了说明目的而假设的。实际上,要查看HashMap
的初始容量(或者更准确地说,是其当前容量,因为扩容后容量会增加),你需要通过间接的方式,比如查看扩容后HashMap
的底层数组长度(但这不是一个公共API,通常不推荐这样做)。
不过,为了理解和演示HashMap
如何处理初始容量,我们可以接受上面的解释:当你指定一个初始容量时,HashMap
会将其调整为大于或等于该值的最小2的幂次方数。
如果考虑负载因子,结果又是多少?
hashMap treeMap hashtable concurrentHashMap
在Java中,HashMap
、TreeMap
、Hashtable
和ConcurrentHashMap
都是常用的Map接口的实现,但它们各自有不同的特性和用途。下面简要介绍每个类的特点和区别:
HashMap
- 特点:基于哈希表的Map接口的非同步实现。它允许使用null值和null键。不保证映射的顺序;特别是它不保证该顺序会随时间保持不变。
- 用途:适用于大多数需要Map集合的场景,特别是当对性能要求较高时。
- 线程安全:不是线程安全的。如果多个线程同时访问一个哈希映射,并且至少有一个线程从结构上修改了映射,则它必须保持外部同步。
TreeMap
- 特点:基于红黑树(Red-Black tree)的NavigableMap实现。该映射根据其键的自然顺序进行排序,或者根据创建映射时提供的
Comparator
进行排序,具体取决于使用的构造方法。 - 用途:适用于需要保持键的有序性的场景。
- 线程安全:不是线程安全的。
Hashtable
- 特点:此类实现一个哈希表,该哈希表将键映射到其相应的值,一个键可以最多映射到最多一个值。此实现为同步的,并且是Java Collections Framework的早期部分。
- 用途:与HashMap类似,但由于其是同步的,因此适用于多线程环境,但通常性能不如
ConcurrentHashMap
。 - 线程安全:是线程安全的。
ConcurrentHashMap
- 特点:一个线程安全的HashMap,分段锁技术,其中将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。
- 用途:适用于高并发环境下的Map集合。
- 线程安全:是线程安全的。
总结
- 性能:在单线程环境下,
HashMap
通常比Hashtable
和ConcurrentHashMap
提供更好的性能。在多线程环境下,ConcurrentHashMap
比Hashtable
提供更好的并发性能。 - 排序:
TreeMap
是唯一提供键排序的Map实现。 - 线程安全:
Hashtable
和ConcurrentHashMap
是线程安全的,而HashMap
和TreeMap
不是。但是,HashMap
可以通过外部同步来实现线程安全,而ConcurrentHashMap
则提供了更高效的并发访问机制。 - 使用场景:根据是否需要排序、是否需要线程安全以及性能要求来选择合适的Map实现。
总结
大家发现了没有,JAVA jdk蕴含着大量的智慧,目前的程序员很多同学直接就能上手,源码也都是公开的,为什么大家会有不知道的,那是因为我们生活的时代过于富饶、不计较内存等资源,这要是嵌入式开发,那是不能容忍的,希望大家多多设计开发时空复杂度追求极致的精品。在此抛砖引玉了……
--end--