我们可以先开一个大小为a的最大值的数组t,每当读入一个数时,我们可以用桶排序的思想,将t[a[i]]加上1,然后我们统计t[1]~t[a[i]]的和ans,ans - 1(除掉这个数本身)就是在这个数前面有多少个数比它小。我们只要用i-ans就可以得出前面有多少数比它大,也就是逆序对的数量。
#include<iostream>
#include<cstdio>
#include<cstring>
#define lowbit(x) (x)&(-x)
using namespace std;
const int maxn = 1e6+10;
int t[maxn],n,result;
void add(int x)
{
while(x<=maxn)
{
t[x]++;
x += lowbit(x);
}
}
int query(int x)
{
int ans=0;
for (;x;x-=lowbit(x))
ans+=t[x];
return ans;
}
int main()
{
int temp;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&temp);
add(temp);
result += i - query(temp);//必须放到add之后
}
printf("%d\n",result);
return 0;
}
如果给定的一组数没有连续,那么就会存在空间浪费,,,需要进行离散化
每次存他们的下标
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
using namespace std;
const int maxn= 500005;
int aa[maxn];//离散化后的数组
int c[maxn]; //树状数组
int n;
struct Node
{
int v;
int order;
}a[maxn];
bool cmp(Node a, Node b)
{
return a.v < b.v;
}
int lowbit(int k)
{
return k&(-k); //基本的lowbit函数
}
void update(int t, int value)
{ //即一开始都为0,一个个往上加(+1),
int i;
for (i = t; i <= n; i += lowbit(i))
c[i] += value;
}
int getsum(int t)
{ //即就是求和函数,求前面和多少就是小于它的个数
int i, sum = 0;
for (i = t; i >= 1; i -= lowbit(i))
sum += c[i];
return sum;
}
int main()
{
int i;
while (scanf("%d", &n), n)
{
for (i = 1; i <= n; i++) //离散化
{
scanf("%d", &a[i].v);
a[i].order = i;
}
sort(a + 1, a + n + 1,cmp);//从1到n排序,cmp容易忘
memset(c, 0, sizeof(c));
for (i = 1; i <= n; i++)
aa[a[i].order] = i;
int ans = 0;
for (i = 1; i <= n; i++)
{
update(aa[i], 1);
ans += i - getsum(aa[i]); //减去小于的数即为大于的数即为逆序数
}
printf("%I64d\n", ans);
}
return 0;
}