GCN
文章平均质量分 59
fmf1287
这个作者很懒,什么都没留下…
展开
-
GCN论文阅读与代码梳理(5)——STSGCN
时空影响图如下: 棕色箭头:每个节点都在同一时间步影响其相邻节点。 蓝色箭头:每个节点都在下一时间步影响自身。 绿色箭头:由于同步的时间相关性,每个节点可以再下一时间步影响其相邻节点。 提出STSGCN的原因: DCRNN、STGCN、ASTGCN提出了捕获时间和空间依赖关系的独立模块,但本文相信如果同时捕获时空关联将会更有效。 时空网络在时空维度上表现出异质性,即不同地点不同时间的交通流量会呈现不同的pattern,但之前的研究在不同的...原创 2021-11-11 16:39:14 · 2366 阅读 · 0 评论 -
GCN论文阅读与代码梳理(4)——GAT
本论文基于注意力的体系结构来执行图结构数据的节点分类。其思想是计算图中每个节点的隐藏表示,通过关注它的邻居,遵循自我注意策略。 图神经层 该层输入为一组节点特征,N为节点个数输出为在每个节点上执行自注意力机制:,该公式去掉了所有图结构信息,为加入图信息,本文使用masked attention,即仅关注节点i在图中的一阶邻居节点。1、用softmax对节点进行归一化:2、进阶的,attention机制用神经网络实现:使用multi-head attention,...原创 2021-11-09 12:15:04 · 921 阅读 · 1 评论 -
GCN论文阅读与代码梳理(3)——ASTGCN
ASTGCN包含三个独立分量,分别模拟交通流量的近期依赖性、日周期性和周周期性。主要贡献有: 通过空间注意力捕捉不同位置之间的空间相关性,通过时间注意力捕捉不同时间之间的时间相关性。 设计了时空卷积模块,包括空间图卷积和时间卷积; 在真实公路交通流量数据集上取得最好的效果。 模型架构如下: X_h是一段与预测周期直接相邻的历史时间序列 X_d是一段过去几天中与预测时间段相同的时间段时间序列 X_w是一段过去几周中与预测时间段...原创 2021-11-08 08:44:49 · 7775 阅读 · 10 评论 -
GCN论文阅读与代码梳理(2)——STGCN
本文提出了基于时空图卷积的网络,解决交通流量预测问题(中长期流量预测问题)。STGCN包含两个时空卷积核和一个输出层。时空卷积核包含一个时域门控卷积、一个空域门控卷积和一个时域门控卷积。 整体时空卷积核的代码如下: 注意到,第一个时域卷积核的激活函数为GLU,而空域卷积核和第二个时域卷积核的激活函数为relu。def st_conv_block(x, Ks, Kt, channels, scope, keep_prob, act_func='GLU'): ...原创 2021-10-28 17:02:27 · 4463 阅读 · 3 评论 -
GCN论文阅读与代码梳理(1)——AGCRN
传统基于GCN的流量预测需要通过距离或相似度定义邻接矩阵,预先定义的图不能包含关于空间依赖性的完整信息,与预测任务没有直接关系,这可能导致相当大的偏差。此外,如果没有适当的知识,这些方法无法适用于其他领域,使得现有的基于GCN的模型失效。因此,提出了DAGG进行图的自适应学习。通过两个自适应模块来增强GCN,以完成交通预测任务: Node Adaptive Parameter Learning (NAPL) module(节点自适应参数学习方法): Data Adaptiv..原创 2021-10-27 12:01:13 · 2783 阅读 · 0 评论