python大数据方向需要学哪些

本文提供了一条学习大数据技术的路线,包括Linux基础、Hadoop生态系统、机器学习、Storm实时计算以及Spark和云计算平台如Docker和OpenStack。此外,还介绍了相关工具和库,如Lucene、Solr、HDFS、YARN、Hive、HBase等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据已经火了很久了。一直想了解一下,但是一直没时间去了解。过年后,终于有时间了。了解了一些资料,结合自身情况,初步整理出一条学习路线。如果有什么问题,希望老天给点建议。

  学习路线

  Linux(shell、高并发架构、lucene、solr)

  Hadoop(Hadoop、HDFS、Mapreduce、yarn、hive、hbase、sqoop、zookeeper、flume)

  机器学习

  斯托姆(斯托姆、卡夫卡、雷迪斯)

  Spark(scala、Spark、spark core、spark sql、spark streaming、spark mllib、spark graphx)

  Python(python,spark python)

  云计算平台(docker、kvm、openstack)

  名词解释

  一. Linux

  Lucene:全文搜索引擎的架构

  Solr:基于lucene的全文搜索服务器,可配置可扩展,优化了查询性能,提供了完善的功能管理接口。

  第二,Hadoop

  hadoop常见

  HDFS:分布式存储系统,包括NameNode和DataNode。NameNode:元数据,DataNode。DataNode:存储数据。

  Yarn:可以理解为MapReduce的协调机制,本质是Hadoop的处理分析机制,分为ResourceManager NodeManager。

  MapReduce:软件框架,编程。

  Hive:数据仓库可以用SQL查询,运行Map/Reduce程序。用于计算趋势或网站日志,不应该用于实时查询,返回结果需要很长时间。

  HBase:数据库。非常适合大数据的实时查询。脸书Hbase用于存储消息数据和实时分析消息。

  ZooKeeper:大型分布式系统的可靠性协调系统。Hadoop分布式同步是通过Zookeeper实现的,比如多NameNode和主备交换机。

  Sqoop:数据库互相转移,关系数据库和HDFS互相转移。

  Mahout:可扩展的机器学习和数据挖掘库。用于推荐挖掘、聚集、分类和频繁项集挖掘。

  Chukwa:一个开源收集系统,它监控大型分布式系统,构建在HDFS和Map/Reduce框架上。显示、监控和分析结果。

  Ambari:它用于配置、管理和监控Hadoop集群。它是基于网络的,有一个友好的界面。

  第二,Cloudera

  Cloudera Manager:管理、监控和诊断集成

  Cloudera CDH: (Cloudera的发行版,包括Apache Hadoop) Cloudera对Hadoop做了相应的改动,发布版本叫CDH。

  Cloudera Flume:日志收集系统,支持在日志系统中定制各种数据发送器来收集数据。

  Cloudera Impala:为存储在Apache Hadoop的HDFS和HBase中的数据提供直接查询交互的SQL。

  Cloudera hue: web manager,包括hue ui、hui server和hui db。Hue为所有CDH组件的shell接口提供接口,mr可以用hue编写。

  三。机器学习/R

  r:用于统计分析和绘图的语言和操作环境,目前为Hadoop-R。

  Mahout:提供机器学习领域经典算法的可扩展实现,包括聚类、分类、推荐过滤、频繁子项挖掘等。并且可以通过Hadoop扩展到云端。

  四。暴风雨

  Storm:一个分布式、容错的实时流计算系统,可用于实时分析、在线机器学习、信息流处理、连续性计算、分布式RPC、实时消息处理和数据库更新。

  Kafka:一个高吞吐量的分布式发布-订阅消息系统,可以处理所有的动作流数据(浏览、搜索等。)在消费级网站。相比Hadoop的日志数据和离线分析,可以实现实时处理。目前Hadoop的并行加载机制统一了线上和线下的消息处理。

  Redis:用C语言编写,支持网络,基于日志的数据库,可以基于内存,持久化的键值数据库。

  动词(verb的缩写)火花

  Scala:一种类似java的完全面向对象的编程语言。

  Spark: Spark是一个类似Hadoop MapReduce的通用并行框架,用Scala语言实现。除了Hadoop MapReduce的优点,与MapReduce不同的是,job的中间输出结果可以保存在内存中,不需要读写HDFS。所以Spark可以更好的应用于数据挖掘、机器学习等需要迭代的MapReduce算法。它可以与Hadoop文件系统并行工作,使用Mesos的第三方集群框架可以支持这种行为。

  Spark SQL:

  Spark Streaming:基于Spark构建的实时计算框架,扩展了Spark处理大数据流数据的能力。

  Spark MLlib: MLlib是Spark的实现库,Spark是一种常用的机器学习算法。目前(2014年5月)支持二元分类、回归、聚类、协同过滤。它还包括梯度下降优化的基本算法。MLlib自jblas线性代数库,jblas本身自远程Fortran程序。

  Spark GraphX: GraphX是Spark中图形和图形并行计算的API。它可以在Spark上提供一站式的数据解决方案,可以方便高效地完成一整套图计算的流水线操作。

  Jblas:一个快速线性代数库(JAVA)。基于BLAS和LAPACK,矩阵计算是实际的行业标准,ATLAS art使用高级基础设施等所有计算程序的实现使其速度非常快。

  Fortran:最早的高级计算机编程语言,广泛应用于科学和工程计算领域。

  BLAS:基本线性代数子程序库,里面有大量关于线性代数运算的编写程序。

  LAPACK:一个知名的公共软件,它包括求解科学和工程计算中最常见的数值线性代数问题,如解线性方程组、线性最大值gxdxbw乘法问题、特征值问题、奇异值问题等。

  ATLAS: BLAS线性算法库的BLAS优化版本。

  Spark python: Spark是用scala语言写的,但是为了普及和兼容,提供了java和python接口。

  不及物动词计算机编程语言

  Python:一种面向对象的解释性计算机编程语言。

  七。云计算平台

  Docker:一个开源应用程序容器引擎

  kvm:(键盘视频鼠标)

  Openstack:一个开源云计算管理平台项目

  原文地址:http://www.ccttoo.com/html/969.html

本文来自网络,不代表菜鸟教程之家立场,转载请注明出处。

<think>嗯,用户想了解Python大数据的要点先后顺序。首先,我得理清大数据领域的主要技术和Python在其中的应用。可能得从基础开始,逐步深入。 首先,用户可能需要先掌握Python的基础语法,因为这是所有后续习的基石。包括变量、数据类型、条件循环这些。然后是函数和模块的使用,接着是面向对象编程。这部分必须扎实,否则后面遇到复杂项目可能会吃力。 接下来是数据处理和分析,毕竟大数据处理的核心就是数据。NumPy和Pandas应该是重点,这两个库在数据处理中太常用了。特别是Pandas的DataFrame,几乎无处不在。数据清洗、转换、聚合这些操作必须熟练。Matplotlib和Seaborn可视化也不能少,毕竟分析结果需要展示。 然后是数据存储和管理。大数据通常涉及大量数据,用户可能需要接触不同的数据库,比如关系型的MySQL,非关系型的MongoDB,还有分布式系统如Hadoop HDFS。这部分需要了解如何用Python连接和操作这些数据库,比如用PyMySQL或者SQLAlchemy。 接下来是大数据处理框架,这里Hadoop和Spark是关键。虽然Hadoop是Java写的,但Python可以通过PySpark调用Spark API。需要理解MapReduce的原理,以及Spark的RDD和DataFrame。分布式计算的概念也很重要,比如分区、容错机制。 机器习和数据挖掘是进阶内容,Scikit-learn是基础库,得掌握常用算法。特征工程、模型评估这些步骤不可或缺。TensorFlow和PyTorch可能对深度习有帮助,但大数据中可能更关注特征处理和模型部署。 实时处理部分,Kafka和Flink的应用需要了解,特别是流式数据的处理。不过可能对Python的支持不如其他语言,需要查看相关库的支持情况。 性能优化和工程化也不能忽视。代码效率、并行处理、使用Dask或Cython优化性能。工程化方面,代码结构、单元测试、日志,以及Docker和Airflow的使用,都是生产环境必需的。 最后,项目实战和持续习。通过实际项目整合知识,参与开源社区,跟进新技术。大数据领域变化快,保持习很重要。 用户可能的背景是刚开始接触Python,想转向大数据方向。可能对各个阶段需要什么不太清楚,或者担心顺序是否合理。需要强调基础的重要性,逐步推进,避免跳跃导致知识断层。同时,实践项目是关键,理论结合实战才能巩固。 需要确保回答结构清晰,分步骤说明,每个阶段的关键点和工具。可能用户希望知道每个阶段的大致时间投入,但问题中没有提到,所以暂时不涉及。另外,确认推荐的库和工具是当前主流的,比如PySpark而非过时的技术。 最后检查是否符合系统级指令,特别是数公式的格式是否正确,但这个问题中没有涉及数内容,可能不需要。但需确保所有技术名词正确,用中文表达,不使用Markdown,分段合理。</think>Python大数据分析的合理路径可分为以下阶段,遵循“基础→工具→框架→实战”的递进逻辑: --- ### 一、Python编程基础(1-2个月) $$ \text{掌握核心语法} \rightarrow \text{数据处理能力} \rightarrow \text{代码优化意识} $$ 1. **基础语法** - 变量、数据类型(列表/字典/集合) - 流程控制(条件判断、循环语句) - 函数定义与模块化编程 - 文件操作(txt/csv/json读写) 2. **面向对象编程** - 类与对象、继承、多态 - 异常处理(try-except-finally) 3. **关键库初探** - `Jupyter Notebook` 交互式开发 - `Numpy` 数组运算(如矩阵操作:$A \cdot B^T$) - `Pandas` 基础数据结构(Series/DataFrame) --- ### 二、数据分析与可视化(1个月) $$ \text{数据清洗} \rightarrow \text{特征工程} \rightarrow \text{可视化表达} $$ 1. **Pandas进阶** - 缺失值处理(`fillna`/`dropna`) - 数据合并(`merge`/`concat`) - 分组聚合(`groupby`+`agg`) 2. **可视化工具** - `Matplotlib` 静态图表(折线图/直方图) - `Seaborn` 统计图形(热力图/分布图) - 交互式工具(`Plotly`/`Bokeh`) --- ### 三、大数据处理框架(2-3个月) $$ \text{分布式计算} \rightarrow \text{并行处理} \rightarrow \text{集群管理} $$ 1. **Hadoop生态** - HDFS分布式文件系统 - MapReduce编程模型(通过`mrjob`库调用) 2. **Spark核心** - PySpark API开发 - RDD弹性数据集(如:`sc.parallelize(data).map(lambda x: x*2)`) - Spark SQL结构化查询 3. **数据库连接** - SQL数据库(`SQLAlchemy`) - NoSQL(`pymongo`操作MongoDB) --- ### 四、机器习与高级应用(2个月+) $$ \text{模型训练} \rightarrow \text{预测优化} \rightarrow \text{部署落地} $$ 1. **机器习基础** - Scikit-learn流程:数据标准化→模型训练→交叉验证 - 常用算法(线性回归、决策树、聚类) 2. **大数据扩展** - 分布式机器习(`Spark MLlib`) - 特征工程优化(如:TF-IDF文本处理) 3. **流数据处理** - Kafka消息队列 - PySpark Streaming实时计算 --- ### 五、工程化与实战(持续进行) $$ \text{代码规范} \rightarrow \text{项目迭代} \rightarrow \text{生产部署} $$ 1. **工程实践** - 代码版本控制(Git) - 容器化部署(Docker) - 任务调度(Airflow) 2. **实战项目示例** - 日志分析系统(ELK+Spark) - 用户行为预测(时序数据建模) - 实时推荐系统(Flink+Redis) --- ### 关键习原则 1. **工具链优先级** ```mermaid graph LR A[Python基础] --> B[Pandas/Numpy] B --> C[Spark/Hadoop] C --> D[机器习] D --> E[生产部署] ``` 2. **避坑建议** - 避免过早深入Hadoop底层(Java方向易分心) - 优先掌握Spark SQL而非原始RDD操作 - 数据量级需渐进(从GB级到TB级) 建议结合Kaggle竞赛或企业案例实践,保持对行业工具(如Delta Lake、Dask)的持续关注。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值