2022-01-15每日刷题打卡

2022-01-15每日刷题打卡

AcWing——y总算法课

854. Floyd求最短路 - AcWing题库

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200
1≤k≤n2
1≤m≤20000
图中涉及边长绝对值均不超过 10000

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1
#include<iostream>
using namespace std;

const int N=210,INF=1e9;
int d[N][N];
int n,m,Q;

void floyd()
{
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}

int main()
{
    cin>>n>>m>>Q;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i==j)d[i][j]=0;
            else d[i][j]=INF;
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        d[a][b]=min(d[a][b],c);
    }
    
    floyd();
    for(int i=0;i<Q;i++)
    {
        int a,b;
        cin>>a>>b;
        if(d[a][b]>INF/2)cout<<"impossible"<<endl;
        else cout<<d[a][b]<<endl;
    }
    return 0;
}

858. Prim算法求最小生成树 - AcWing题库

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤500
1≤m≤10^5
图中涉及边的边权的绝对值均不超过 10000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6
#include<iostream>
using namespace std;
#include<string.h>

const int N=510,INF=0x3f3f3f3f;
int dist[N],g[N][N];
int n,m;
bool flag[N];

int prim()
{
    memset(dist,0x3f,sizeof dist);
    int res=0;
    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
            if(!flag[j]&&(t==-1||dist[t]>dist[j]))
                t=j;
        
        if(i&&dist[t]==INF)return INF;
        if(i)res+=dist[t];
        for(int j=1;j<=n;j++)dist[j]=min(dist[j],g[t][j]);
        flag[t]=true;
    }
    return res;
}

int main()
{
    memset(g,0x3f,sizeof g);
    cin>>n>>m;
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[b][a]=g[a][b]=min(g[a][b],c);
    }
    int t=prim();
    if(t==INF)cout<<"impossible"<<endl;
    else cout<<t<<endl;
    return 0;
}

蓝桥杯——历届真题

完全二叉树的权值【第十届】【省赛】【B组】

因为一些特殊原因题目复制不下来,请点击题目链接移步去看。

拿一个数组把值存下,然后分成多次遍历数组,每一次遍历,需要遍历的数增加,比如第一次遍历只用遍历第一个元素,第二次遍历只用遍历第二和第三个元素,第三次遍历遍历第4到第7个元素…模拟每一层的顺序,遍历同时维护最大值,并记录最大值出现在哪一层。遍历结束后输出记录的层数。

#include<iostream>
using namespace std;
#include<vector>

int main()
{
	int n, u = 0, max_num = -1e6 , min_u = 1,deep=1,ans=0;
	cin >> n;
	vector<int>v(n);
	for (int i = 0; i < n; i++)
		cin >> v[i];
	for (int i = 0; i < n; i++)
	{
		int sum = 0;
		u++;
		ans = ans+deep>n?n:(ans+deep) ;
		for (i; i < ans; i++)
		{
			sum += v[i];
		}
		if (max_num < sum)
		{
			max_num = sum;
			min_u = u;
		}
		i--;
		
		deep *= 2;
	}
	cout << min_u << endl;
	return 0;
}
	u++;
	ans = ans+deep>n?n:(ans+deep) ;
	for (i; i < ans; i++)
	{
		sum += v[i];
	}
	if (max_num < sum)
	{
		max_num = sum;
		min_u = u;
	}
	i--;
	
	deep *= 2;
}
cout << min_u << endl;
return 0;
}
参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

你好_Ä

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值