差分

给定一个离散序列: a0,a2,,an, a 0 , a 2 , ⋯ , a n , ⋯

零阶差分(原序列): Δ0hn=an Δ 0 h n = a n

一阶差分: Δ1hn=an+1an Δ 1 h n = a n + 1 − a n

二阶差分: Δ2hn=Δ1hn+1Δ1hn=an+22an+1+an Δ 2 h n = Δ 1 h n + 1 − Δ 1 h n = a n + 2 − 2 ⋅ a n + 1 + a n

三阶差分: Δ3hn=Δ2hn+1Δ2hn=an+33an+2+3an+1an Δ 3 h n = Δ 2 h n + 1 − Δ 2 h n = a n + 3 − 3 ⋅ a n + 2 + 3 ⋅ a n + 1 − a n

p p 阶差分: Δphn=Δp1hn+1Δp1hn

观察发现: Δphn=i=0p(1)piCipan+i Δ p h n = ∑ i = 0 p ( − 1 ) p − i ⋅ C p i ⋅ a n + i

如果 ax a x 是关于 x x k次多项式, 即: ax=i=0kbixi a x = ∑ i = 0 k b i ⋅ x i

Δ1hx=ax+1ax=i=0kbi(x+1)ii=0kbixi=i=0kbij=0iCjixji=0kbixi=j=0kxji=jkbiCjii=0kbixi=i=0kxij=ikbjCiji=0kbixi=i=0kxi(j=ik(bjCij)bi)=i=0k1xij=i+1kCijbj(80)(81)(82)(83)(84)(85)(86) (80) Δ 1 h x = a x + 1 − a x (81) = ∑ i = 0 k b i ⋅ ( x + 1 ) i − ∑ i = 0 k b i ⋅ x i (82) = ∑ i = 0 k b i ∑ j = 0 i C i j ⋅ x j − ∑ i = 0 k b i ⋅ x i (83) = ∑ j = 0 k x j ∑ i = j k b i ⋅ C i j − ∑ i = 0 k b i ⋅ x i (84) = ∑ i = 0 k x i ∑ j = i k b j ⋅ C j i − ∑ i = 0 k b i ⋅ x i (85) = ∑ i = 0 k x i ⋅ ( ∑ j = i k ( b j ⋅ C j i ) − b i ) (86) = ∑ i = 0 k − 1 x i ∑ j = i + 1 k C j i ⋅ b j

定理1: k k 次多项式差分后为k1次多项式

差分的线性叠加性: hn=αfn+βgn h n = α ⋅ f n + β ⋅ g n

Δhn=(αfn+1+βgn+1)(αfn+βgn)=α(fn+1fn)+β(gn+1gn)=αΔfn+βΔgn(87)(88)(89) (87) Δ h n = ( α ⋅ f n + 1 + β ⋅ g n + 1 ) − ( α ⋅ f n + β ⋅ g n ) (88) = α ⋅ ( f n + 1 − f n ) + β ⋅ ( g n + 1 − g n ) (89) = α ⋅ Δ f n + β ⋅ Δ g n


对于一个 k k 次多项式ax=i=0kbixi

已知它的 Δ0h0,Δ1h0,Δ2h0,,Δkh0 Δ 0 h 0 , Δ 1 h 0 , Δ 2 h 0 , ⋯ , Δ k h 0

根据二项式反演:
已知: f(n)=i=0nCing(i) f ( n ) = ∑ i = 0 n C n i ⋅ g ( i ) , 则: g(n)=i=0n(1)niCinf(i) g ( n ) = ∑ i = 0 n ( − 1 ) n − i ⋅ C n i ⋅ f ( i )

令: g(n)=Δnh0=i=0n(1)niCinai(0nk)0(n>k) g ( n ) = Δ n h 0 = { ∑ i = 0 n ( − 1 ) n − i ⋅ C n i ⋅ a i ( 0 ≤ n ≤ k ) 0 ( n > k )

反演得到: f(n)=an=i=0nCinΔih0=i=0kCinΔih0 f ( n ) = a n = ∑ i = 0 n C n i ⋅ Δ i h 0 = ∑ i = 0 k C n i ⋅ Δ i h 0


考虑 k k 次多项式ai的前 n n 项和sn=i=0nai
sn=i=0nai=i=0nj=0kCjiΔjh0=j=0kΔjh0i=0nCji s n = ∑ i = 0 n a i = ∑ i = 0 n ∑ j = 0 k C i j ⋅ Δ j h 0 = ∑ j = 0 k Δ j h 0 ∑ i = 0 n C i j

i=0nCmi=Cm+1n+1 ∑ i = 0 n C i m = C n + 1 m + 1 (数学归纳法可证明)

sn=j=0kΔjh0i=0nCji=j=0kΔjh0Cj+1n+1=i=0kCi+1n+1Δih0 s n = ∑ j = 0 k Δ j h 0 ∑ i = 0 n C i j = ∑ j = 0 k Δ j h 0 ⋅ C n + 1 j + 1 = ∑ i = 0 k C n + 1 i + 1 ⋅ Δ i h 0

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值