20、甲骨文融合应用环境配置指南

甲骨文融合应用环境配置指南

1. 预配置总结

在响应文件的配置过程中,若想重新查看某些部分,可选中相应复选框,然后点击“下一步”进入预配置总结界面。此界面与响应文件创建总结界面类似,但没有选择响应文件、总结文件名及文件保存位置的选项。若之前对响应文件做了修改,这里会显示更新后的信息。查看总结后点击“下一步”,向导会更新响应文件及相关总结文件。后续界面除在阶段完成时点击“下一步”或阶段失败时点击“重试”外,无需额外输入。

2. 预验证阶段

预验证阶段会在后台运行一系列检查,以确保环境满足安装先决条件。以下是该阶段的详细介绍:
- 启动方式 :当屏幕显示目标任务树时,若安装拓扑中选择了其他主节点和/或辅助节点,可从这些节点启动该阶段,但必须通过命令行界面操作。启动脚本如下:

./runProvisioning.sh -responseFile <响应文件路径> -target preverify [-ignoreSysPrereqs true]

示例:

[fusion@primaryhost ]$  cd /app/fusion/provisioning/bin
[fusion@primaryhost bin]$ ./runProvisioning.sh -responseFile /app/fusion/provisioning/bin/provisioning.rsp -target preverify -ignoreSysP
内容概要:本文详细介绍了一个基于Python实现的SO-ESN项目,即利用蛇群优化算法(SO)优化回声状态网络(ESN)进行多输入单输出回归预测的完整实例。文章涵盖了项目背景、目标、挑战与解决方案,并系统阐述了模型架构,包括数据预处理、特征降维、ESN网络结构、SO优化算法集成、评估可视化及模型解释性等模块。通过将SO算法与ESN深度融合,实现了对ESN关键参数的智能优化,显著提升了模型的预测精度、鲁棒性、泛化能力与收敛速度。文中还提供了核心代码示例,涵盖数据处理、PCA降维、ESN定义、SO算法实现、模型训练预测、结果评估与SHAP解释性分析,展示了从建模到部署的全流程。; 适合人群:具备一定Python编程和机器学习基础,熟悉神经网络与优化算法的研发人员、高校学生及科研工作者,尤其适合从事时间序列预测、智能优化与回归建模相关工作的技术人员; 使用场景及目标:①应用于金融、工业、交通、能源等领域的多输入单输出时序预测任务;②研究智能优化算法(如SO)与神经网络(如ESN)的融合机制;③实现高精度、自动化、可解释的回归建模;④降低人工调参成本,提升模型稳定性与泛化性能; 阅读建议:此资源以实战项目为导向,建议读者结合代码逐步复现各模块流程,重点关注SO算法与ESN的集成逻辑、参数优化机制及模型评估与解释方法,建议在实际数据集上进行调参与验证,以深入掌握其应用技巧与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值