题目一、jobdu1073:杨辉三角形
http://ac.jobdu.com/problem.php?pid=1073
-
题目描述:
输入n值,使用递归函数,求杨辉三角形中各个位置上的值。
-
输入:
一个大于等于2的整型数n
-
输出:
-
题目可能有多组不同的测试数据,对于每组输入数据,
按题目的要求输出相应输入n的杨辉三角形。
-
样例输入:
-
6
-
样例输出:
-
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
题目分析:
可以用推和递归,题目要求递归但是好像超时了,只能递推了。简单题详见代码。
AC代码:
/**
*西北工业大学2011研究生机试题
*/
#include<iostream>
#include<cmath>
using namespace std;
int a[105][105];
int YangHui(int x,int y){//题目要求用递归,不过在九度上测试超时,无奈只能用递推
if(x==y||y==0) return 1;
else return YangHui(x-1,y)+YangHui(x-1,y-1);
}
int main()
{
for(int i=0;i<100;i++){
for(int j=0;j<100;j++){
if(i==j||j==0) a[i][j]=1;
else a[i][j]=a[i-1][j]+a[i-1][j-1];
}
}
int n;
while(cin>>n){
/**
for(int i=1;i<n;i++){//递归代码
for(int j=0;j<i;j++){
cout<<YangHui(i,j)<<" ";
}
cout<<YangHui(i,i)<<endl;
}**/
for(int i=1;i<n;i++){//递归代码
for(int j=0;j<i;j++){
cout<<a[i][j]<<" ";
}
cout<<a[i][i]<<endl;
}
}
return 0;
}
AC代码(递归代码):
#include <iostream>
using namespace std;
int a[600][600],k=0;
int dfs(int i,int j){
if(i==0) return a[i][j]=1;
if(j==0||i==j) {
a[i][j]=1;
for(int k=2;k<j;k++){//搜索最后一行的所有
dfs(i,k);
}
}
if(a[i][j]) return a[i][j];
return a[i][j]=dfs(i-1,j-1)+dfs(i-1,j);
}
int main()
{
dfs(400,400);
//cout<<a[6][6]<<endl;
int n;
while(cin>>n){
for(int i=1;i<n;i++){
for(int j=0;j<i;j++){
cout<<a[i][j]<<" ";
}
cout<<a[i][i]<<endl;
}
}
//cout << "Hello world!" << endl;
return 0;
}
题目二、jobdu1470:调整方阵
http://ac.jobdu.com/problem.php?pid=1470
-
输入一个N(N<=10)阶方阵,按照如下方式调整方阵:
1.将第一列中最大数所在的行与第一行对调。
2.将第二列中从第二行到第N行最大数所在的行与第二行对调。
依此类推...
N-1.将第N-1列中从第N-1行到第N行最大数所在的行与第N-1行对调。
N.输出这个方阵
-
输入:
-
包含多组测试数据,每组测试数据第一行为一个整数N,表示方阵的阶数.
接下来输入这个N阶方阵.
-
输出:
-
调整后的方阵
-
样例输入:
-
4 3 6 8 7 6 7 5 3 8 6 5 3 9 8 7 2
-
样例输出:
-
9 8 7 2 6 7 5 3 3 6 8 7 8 6 5 3
题目分析:
简单的模拟题,注意控制下标的操作即可,见代码。
AC代码:
/**
*西北工业大学2011研究生机试题
*/
#include<iostream>
#include<cstdio>
using namespace std;
int a[12][12];
void TiaoZ(int n){
int ma,k;
for(int i=1;i<=n;i++){
ma=a[i][i]; k=i;
for(int j=i+1;j<=n;j++){//每次从第i行开始比较
if(ma<a[j][i]){//找到最大数所在的行
ma=a[j][i]; k=j;
}
}
for(int c=1;c<=n;c++){//交换第i和第k行
int tmp=a[i][c];
a[i][c]=a[k][c];
a[k][c]=tmp;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<n;j++){
cout<<a[i][j]<<" ";
}
cout<<a[i][n]<<endl;
}
}
int main()
{
int n;
while(cin>>n){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>a[i][j];
}
}
TiaoZ(n);
}
return 0;
}
题目三、jobdu1471:合并符串
http://ac.jobdu.com/problem.php?pid=1471
-
给定两个字符串S1和S2,合并成一个新的字符串S。
合并规则为,S1的第一个字符为S的第一个字符,将S2的最后一个字符作为S的第二个字符;
将S1的第二个字符作为S的第三个字符,将S2的倒数第二个字符作为S的第四个字符,以此类推。
-
输入:
-
包含多组测试数据,每组测试数据包含两行,代表长度相等的两个字符串S1和S2(仅由小写字母组成,长度不超过100)。
-
输出:
-
合并后的新字符串S
-
样例输入:
-
abc def
-
样例输出:
-
afbecd
只需要用一个变量ok控制添加那个字符串的字符,用ok=0,ok=1表示。此题给出的字符串长度相等,代码中给出了不相等的代码。
AC代码:
#include<iostream>
#include<string>
using namespace std;
int main()
{
string s1,s2;
while(cin>>s1>>s2){
int i,j,ok=0;
i=0; j=s2.size()-1;
string s;
while(i<s1.size()&&j>=0){
if(ok==0){//用ok控制添加那个字符
ok=1;
s+=s1[i++];
}
else{
ok=0;
s+=s2[j--];
}
}
//适合不相等的两个字符串,对于本题可以去掉
while(i<s1.size()){
s+=s1[i++];
}
while(j>=0){
s+=s2[j--];
}
cout<<s<<endl;
}
return 0;
}
题目四、题目1472:求两个多项式的和
http://ac.jobdu.com/problem.php?pid=1472
-
题目描述:
-
输入两个多项式,计算它们的和。
每个多项式有若干对整数表示,每组整数中,第一个整数表示系数(非0),第二个整数表示该项的次数。
如由3 3 5 -2 1 4 0表示3x^5 - 2 * x + 4其中第一个3表示该多项式由三个整数对表示。
-
输入:
-
输入为两行,分别表示两个多项式。表示每项的整数对按照次数大小降序给出。(次数绝对值小于1000,系数绝对值小于10000)
-
输出:
-
按照降次顺序输出表示和多项式的整数对(系数为0的整数对不用输出,整数对由空格分隔,最后一个整数对后不添加空格)
-
样例输入:
-
3 3 5 -2 1 4 0 4 2 3 -1 2 1 1 3 0
-
样例输出:
-
3 5 2 3 -1 2 -1 1 7 0
此题的意思可能是要用链表进行编程的,由于数据太小小编没有用链表而是用两个数组a[],b[],进行编程实现的,用数组a表示指数p大于等于0的项,用数组b表示指数小于0的项。详见代码。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int a[1005],b[1005];//a表示指数大于0,b表示指数小于0
int main()
{
int n,m,d,p;
while(cin>>n){
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=0;i<n;i++){
cin>>d>>p;
if(p>=0) a[p]=d;
else b[-p]=d;
}
cin>>m;
for(int i=0;i<m;i++){
cin>>d>>p;
if(p>=0) a[p]+=d;
else b[-p]+=d;
}
int ok=1;
for(int i=1000;i>=0;i--){
if(a[i]){//注意去掉末尾的空格
if(ok){ok=0; cout<<a[i]<<" "<<i;}
else cout<<" "<<a[i]<<" "<<i;
}
}
for(int i=1;i<=1000;i++){
if(b[i]) cout<<" "<<b[i]<<" "<<-i;
}
cout<<endl;
}
return 0;
}