自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 算法实习准备之五:算法岗面试整理

算法实习准备之五算法岗面试整理CVFaster-RCNNCNN卷积池化全连接层反向传播LSTMAttentionTranformer机器学习算法线性回归LRSVM优化方法梯度下降法正则化NLPword2vecBert算法岗面试整理CVFaster-RCNNCNN卷积解释卷积层的最佳方法是想象有一束手电筒光正从图像的左上角照过。假设手电筒光可以覆盖 5 x 5 的区域,想象一下手电筒光照过输入图像的所有区域。在机器学习术语中,这束手电筒被叫做过滤器(filter,有时候也被称为神经元(neuron

2021-03-18 22:24:29 878

原创 算法实习准备之四:代码题输入输出

算法实习准备之四代码题输入输出代码题输入输出data=list(map(int,input().split()))print(data)import sysres = []for line in sys.stdin: a = line.split() res.append(int(a[0])+int(a[1]))for item in res: print(item)import sysfor line in sys.stdin: a = line.spl

2021-03-17 17:08:54 931

原创 算法实习准备之三:感知机/损失函数/softmax/batch

算法实习准备之三机器学习算法复习(八)感知机常见的损失函数交叉熵损失函数Cross-entropy loss functionhinge损失函数平方损失函数log对数损失函数softmaxbatchbatch过大batch过小机器学习算法复习(八)感知机感知机可以拟合任何的线性函数,任何线性分类或线性回归问题都可以用感知机来解决。但是感知机不能实现异或运算,因为异或运算不是线性的。而多层感知机可以很好地解决非线性问题。常见的损失函数交叉熵损失函数Cross-entropy loss functi

2021-03-16 22:27:10 928

原创 算法实习准备之三:GAN/Feature scaling

算法实习准备之三机器学习算法复习(七)GAN自编码器结构GeneratorDiscriminator训练cycleGANunsupervised image captioningFeature scaling归一化为什么对特征数据进行归一化归一化的类型Batch Normalization批归一化作用GroupNorm组归一化一个完整机器学习项目的流程机器学习算法复习(七)GAN自编码器先训练一个encoder,把input转换成code,然后训练一个decoder,把code转换成一个image

2021-03-15 22:11:36 409

原创 算法实习准备之三:CNN/LSTM/GRU

算法实习准备之三机器学习算法复习(六)每日leetcode机器学习算法复习(六)每日leetcode题目:给你一个字符串 s,找到 s 中最长的回文子串。解析:动态规划class Solution(object): def longestPalindrome(self, s): n = len(s) dp = [[False] * n for _ in range(n)] ans = "" # 枚举子串的长度 l+1

2021-03-13 22:28:32 727

原创 算法实习准备之三:朴素贝叶斯/EM/k-means

算法实习准备之三机器学习算法复习(五)机器学习算法复习(五)

2021-03-12 17:45:57 472

原创 算法实习准备之三:决策树/集成学习

算法实习准备之三机器学习算法复习(四)决策树特征选择信息增益ID3算法决策树的构造决策树的修剪集成学习BoostingAdaBoost参考资料:《深度学习》科学出版机器学习算法复习(四)决策树决策树算法是一种利用树结构进行分类的监督学习算法。对于一棵已经构建好的决策树,一个新的数据将从根节点开始,不断根据节点所对应的属性判断条件沿着节点之间的边向下搜索,直至达到叶子节点并得到叶子节点所对应的类别归属信息。一棵好的决策树的标准是它的分类精度要高,即与训练数据矛盾较小,而且树的规模小,这样计算效率更高

2021-03-11 18:04:07 735

原创 算法实习准备之三:Logistic回归/SVM/KNN/Tensorflow

算法实习准备之三机器学习算法复习(三)监督学习逻辑回归机器学习算法复习(三)监督学习监督学习是利用有标签的数据样本进行训练的一种机器学习方法。回归问题:输入变量和输出变量均为连续变量的预测问题,等价于函数拟合。常用的损失函数是平方损失函数。分类问题:输入变量不限,输出变量为有限个离散变量的预测问题,从数据中学习一个分类器。常用的评价分类器性能的指标是分类准确率:在给定的测试数据集上,分类器正确分类的样本数与总样本数之间的比值。逻辑回归逻辑回归是一种分类算法...

2021-03-10 22:07:54 734

原创 算法实习准备之三:似然估计

算法实习准备之三机器学习算法复习(二)每日leetcode机器学习算法复习(二)每日leetcode<加法模板>while ( A 没完 || B 没完))A 的当前位B 的当前位和 = A 的当前位 + B 的当前位 + 进位carry当前位 = 和 % 10;进位 = 和 / 10;A ++B ++ 判断还有进位吗def addTwoNumbers(self, l1, l2): l3 = head = ListNode(0) carr

2021-03-07 17:16:45 224

原创 算法实习准备之三:(优化方法)梯度下降/正则化(过拟合)/激活函数

算法实习准备之三机器学习算法复习(一)深度学习的优化深度学习优化的困难和挑战梯度爆炸梯度消失机器学习算法复习(一)深度学习的优化深度学习优化的困难和挑战梯度爆炸梯度消失...

2021-03-06 21:50:45 1274

原创 算法实习准备之二:剑指Offer在线编程经验总结

算法实习准备之二剑指Offer在线编程经验总结题目剑指Offer在线编程经验总结牛客网剑指Offer在线编程链接题目

2021-03-01 20:57:47 1597 1

原创 算法实习准备之一:数据结构复习(四)

算法实习准备之一数据结构复习(四)图数据结构复习(四)图1.广度优先搜索(Breadth-First-Search,BFS)2.深度优先搜索(Depth-First-Search,DFS)3.最小生成树

2021-02-18 21:51:22 94

原创 算法实习准备之一:数据结构复习(三)

算法实习准备之一数据结构复习(三)二叉树树满二叉树完全二叉树二叉排序树平衡二叉树数据结构复习(三)二叉树树树中一个结点的子结点的个数称为该结点的度,树中结点的最大度数称为树的度。结点的深度是从根结点开始自顶向下逐层累加的。结点的高度是从叶结点开始自底向上逐层累加的。树的性质:1.树中的结点数等于所有结点的度数加1.2.度为m的树中第i层至多有m^(i-1)个结点。3.高度为h的m叉树至多有(m^h-1)/(m-1)个结点。4.具有n个结点的m叉树的最小高度为logm(n(m-1)+1)

2021-02-17 21:06:23 264

原创 算法实习准备之一:数据结构复习(二)

算法实习准备之一数据结构复习(二)栈队列栈和队列的应用数据结构复习(二)栈栈:只允许在一端(栈顶)进行插入或删除操作的线性表。后进先出顺序栈:栈的顺序存储ElemType data[MaxSize];int top;S.top==-1; //栈空条件S.top==MaxSize-1; //栈满条件S.length==S.top+1; //栈长S.data[++S.top]=x; //进栈x=S.data[S.top--]; //出栈链栈:栈的链式存储优点:便于多个栈共享存储空

2021-01-29 21:47:39 102

原创 算法实习准备之一:数据结构复习(一)

算法实习之一数据结构复习新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入数据结构复习你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了

2021-01-28 22:09:44 175

原创 Reflective Decoding Network for Image Captioning论文阅读

Reflective Decoding Network for Image Captioning论文阅读2019cvpr 香港科技大学+腾讯论文简介1.目前最先进的图像描述方法主要集中在增强对图像视觉特征的利用上,比如在图像上应用不同形式的注意力机制,但是较少的方法通过应用语言的内在特性来提高图像描述的性能。2.本文中提到的RDN反射解码网络将重心放在解码器部分,第一次同时应用了视觉注意力和文本注意力。3.这个反射解码网络还有一个优点是可以直观地看到模型是如何根据已经生成的单词进行单词预测。看下

2020-06-19 22:12:29 570

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除