idea
codingDL
deeplearning
展开
-
竞赛游戏设计与AI在线/终身/弱监督学习利用
认知标注任务都做成游戏https://blog.csdn.net/foreachself/article/details/112166372比如一堆图像到处晃,然后让识别里面有啥,检测等等屏幕(游戏)分辨率,就是CNN感知的那个面 然后游戏内容就是一堆图像乱飞,遮挡,colorshift都安排上 我就不信泛化能力不强了?重标注: 比如多人去标同一张图像,同一张图像拥有多人的标注版本动态标注: 让图像随机连续平移(其他增强都可以),然后人工去用刚开始标的(此处为bbox)框去跟踪,调整框(或者标注原创 2021-03-29 17:04:02 · 148 阅读 · 0 评论 -
A Framework : Invertible Optimization for Neural Network Training
meta learning workflow现工作(无修改的)改动原创 2021-01-09 17:44:44 · 168 阅读 · 0 评论 -
一个计算图检索平台
提供一个计算图储存平台(不要权重)你想到一个计算图,系统可以直接去检索类似的(show me the code, not the paper!)如果有人复现就直接copy下来改包括改动记录都被平台记录这就是方法引用,引用链具体细节还是很麻烦的,引用的方法比实现多的多。底层模块,全局架构,类似变种,不同任务,等等引用从meta架构(如resnet簇 mobilenet簇 那种)分割,不同配置下实例化,这些都要追踪肯定得基于onnx,不然从零搞DL框架搞不起我这个想法说不定可行。本质就是爬原创 2021-01-05 17:04:21 · 119 阅读 · 1 评论 -
图像增强trick大集合
awesome augmention这篇文章记录我想到的所有数据增强方法如果有实现我会贴找到的相关分类:输入是图像,任务是翻译数据集永远是真实世界的子集:图像随机增强,标签随机增强,pair随机增强增强图像=工程泛化/实景兼容(一切图像算法)增强标签?增强pair?只有很少的图像增强才被使用的原因是 增强不对等没人提出标签增强,(图像-标签)pair增强以后我们可能会有一个数据集的sheet上面写着就是这些特征统计信息,画成fig供取用什么的能严格定义的东西,认知级别的,都是应该被统计原创 2021-01-04 00:31:16 · 367 阅读 · 0 评论 -
组建神经网络需要什么概念?
前向模式-通常计算原子算子数学算子:定义域在全体实数范围下的数学操作张量算子:张量的轴,维数发生,扩张,收缩,重排逻辑算子:if max 等等具有布尔运算参与的算子大多数数学算子可以被逻辑算子表示(数学可导更可靠)数学方程可以被转化成编程算法张量节点张量节点可视化的方法:(轴,维数,结合信息意义;并在1,2,3维上摊开,把子嵌入进去)【不是很好说这个】叶张量,根张量,骨干张量 标识(这是为了让骨干传播范围可导,允许局部训练)原子节点组合叶张量,得到可学算子一切从根张量开始传播计算(原创 2020-12-21 11:31:37 · 281 阅读 · 0 评论 -
给神经网络一个不同的视角 - 卷积算子
根据stride 生成锚点阵 - 绿色根据 k核尺寸&img图片尺寸 画框 - 蓝色&红色裁剪得到裁剪的锚点阵按照用卷积核锚点对图片采样Q:会发生什么事情?A:这就是卷积啊又一个视角而且这样看,你可以发现核本质是什么东西# 根据stride 生成锚点阵anchors = []for y in range(0,h,s): for x in range(0,w,s): anchor.append((x,y))# 根据 k核尺寸&img.原创 2020-12-23 15:48:51 · 178 阅读 · 1 评论 -
将常规图像重新表征的几个方法
1pos-color图,pos是欧式坐标系,其中的点上的label是color,用视觉表示就是图像color-pos图,color是颜色空间坐标系,其中点上的label是pos,视觉表示是颜色点云在颜色点云上框选,就是阀值了,最简单的亮度阀值,点云在伽马曲面上color-pos图要是有个交互程序就好玩了,emb到2d空间上,图像就那样移动,缩放,去看分布gimp有个函数就是,保证每个点都不变,然后根据算法重新打上pos随机偏移坐标,你甚至能重排,仍然保证颜色分布一模一样2CNN的特征表示,原创 2020-12-19 11:55:59 · 479 阅读 · 2 评论 -
关于神经网络最大架构的改进
是现在我们用的深度学习(最大架构)我脑洞又双发,扩展了implicitNN(与其区别),如下思想一句话:优化器在外边,不在里边理解需要解耦骨干梯度与参数的梯度求法,梯度来源于损失的固有理念向前传播整个网向反传播整个网这个网络可牛逼了1.能永久学习2.不会陷入局部最优或鞍点(平地?不存在的)3.向下兼容的扩展能力很强,比如我要增加一下网络深度,可以直接加个新层想法是这样,可是咋训呢?...原创 2020-12-18 18:10:54 · 211 阅读 · 1 评论 -
矩阵乘法02
黑盒trick其实传统的内积based网络不能学习index的特性但两维转置存在瓶颈index保持了自增群的特征可以提出PermuteNet代替掉.T做一种阀值设计,达到就permute mat通过[x,y]扫描得到(3)的向量最后如果您做出了什么请在评论留言并在paper里求一个小小的acknowledge,非常感谢!!...原创 2020-08-02 15:57:52 · 309 阅读 · 0 评论