LightOJ - 1027 A Dangerous Maze

                                        A Dangerous Maze

 

You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

If you choose the i th door, it can either take you back to the same position where you begun in x i minutes, or can take you out of the maze after x i minutes. If you come back to the same position, you can 't remember anything. So, every time you come to the beginning position, you have no past experience.

Now you want to find the expected time to get out of the maze.

 

Input

Input starts with an integer T ( ≤ 100) , denoting the number of test cases.

Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the i th integer (x i ) is positive, you can assume that the i th door will take you out of maze after x i minutes. If it's negative, then the i th door will take you back to the beginning position after abs(x i ) minutes. You can safely assume that 1 ≤ abs(x i ) ≤ 10000 .


Output

For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print 'inf' . Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.

Sample Input

3

 

1

1

 

2

-10 -3

 

3

3 -6 -9

Sample Output

Case 1: 1/1

Case 2: inf

Case 3: 18/1

本题的题意:在一个迷宫里,有n个门,如果ai是正数,那么在ai时间后,将要走出迷宫,如果是负数的话,他将要在ai时间后,重新开始选择,并且忘记以前的记忆。求走出迷宫的时间期望。

设门的总数是N, 有N1 个门可以走出迷宫, N2 个门会返回原来的位置. T1为总的总出迷宫的时间, T2为总的返回原位的时间

          则 P(走出迷宫)= N1 / N ,  P(返回)= N2 / N,

          题目转化为需要多少实验才能取得成功.

          随机变量X符合几何分布...

 此题目中

p= N1 / N 

期望实验次数: E(X)= N / N1    //本题关键...若打开姿势不对..必挂T^T

每次实验消耗的时间: T= (T1 + T2) /  N

所需时间的数学期望: E(T)=(N / N1) * ( ( T1 + T2) / N) =( T1 + T2) / N1;

 

#include<bits/stdc++.h>
using namespace std;
int a[105];
int T , n;
int gcd(int x ,int y){
    while(y){
        int t = x % y;
        x = y;
        y = t;
    }
    return x;
}
int main(){
    cin >> T;
    int t = 1;
    while(T--){
        int num = 0 , sum  = 0;
        cin >> n;
        for(int i = 1;i <= n;i++){
            cin >> a[i];
            if(a[i] > 0) num++;
            sum += abs(a[i]);
        }
        printf("Case %d: ",t++);
        if(!num)printf("inf\n");
        else{
            //cout << sum <<endl <<num;
            int flag = gcd(sum , num);
           // cout << sum / flag <<"/"<<num/flag;
            printf("%d/%d\n",sum/flag , num/flag);
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了小程序应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值