方法一:利用空间
遍历链表,对于每个节点对象,新增属性isVisited = true。同时每次遍历判断下一个节点是否拥有isVisited属性,如果有那么下一个节点就是入环的第一个节点。
- 时间复杂度O(n)
- 空间复杂度O(n)
var hasCycle = function(head) {
var curr = head;
while(curr != null) {
if(curr.next == null) {
return false;
}
if(curr.next.isCheck) {
return curr.next;
} else {
curr.isCheck = true;
curr = curr.next;
}
}
return false;
};
方法二:快慢指针
用两个指针同时遍历链表,快指针每次走两步,慢指针每次走一步。如果链表中有环,那么他们终将相遇。可证:自他们相遇后,指针1从起点每次走一步,指针2从相遇点每次走一步,指针1和指针2相遇处就是环的起点。证明如下:
如下图,设Y点为环起点,Z点为快慢指针相遇点,abc为这几个关键节点间的路程(可能包括很多节点)。
因为,相遇时快指针走过的路程肯定为慢指针走过的路程的2倍。得:
(a+b)2 = a+b+(b+c)n //n>=1,n为快指针在相遇前绕环的圈数
解方程得 a = (b+c)(n-1)+c
所以:
当n=1时,a=c
当n>1时,a=c+n圈
得证。
- 时间复杂度O(n)
- 空间复杂度O(1)
var hasCycle = function(head) {
var p1 = head;
var p2 = head;
while(p2 !== null && p2.next !== null) {
p1 = p1.next;
p2 = p2.next.next;
if(p1 === p2) { //判断有环
p1 = head; //p1从头开始每次走一步,p2从相遇处开始每次走一步
while(p1 != p2) {
p1 = p1.next;
p2 = p2.next;
}
return p1;
}
}
return false;
};