【动态规划】—— 背包问题


背包问题的分类


01背包问题 

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

 在求选 第 i 个物品的状态转移方程的时候,我们可以取出 \small f[i-1,j-v[i]] 的最大值再加上 w[i]

不选第 i 个物品的话,状态转移方程就是 \small f[i][j] = f[i - 1,j]  

\small f[i,j]=max\begin{cases}f[i-1,j] & \\ f[i-1, j -V_i] +w_i &if(j\geqslant V_i) \end{cases}\small f[i] 


#include <iostream>
#include <cstring>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ )
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    cout << f[n][m] << endl;
    return 0;
}

从二维优化到一维 

通过  DP 的状态转移方程,我们发现,每一阶段的 i 的状态只与上一阶段的 i-1 的状态有关。在这种情况下,可以使用称为“滚动数组”的优化方法,降低时间开销。 

因为 \small f[j] = max(f[j], f[j - v[i]] + w[i]) 这里的 \small f[j - v[i]] 一定比 \small f[j] 更早计算出来,所以 \small f[j - v[i]] 计算得到的是第 i 层的,而在我们上述的 DP 方程中,所用的是第 i - 1 层的数据,所以如果是从小到大遍历体积的话,会出现 “数据污染” 的情况。所以体积的枚举要从大到小来枚举。

一维优化代码实现

#include <iostream>
#include <cstring>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++ )
        for(int j = m; j >= v[i]; j -- )
        {
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
        
    cout << f[m] << endl;
    return 0;
}

完全背包问题

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

 

对于朴素做法有: \small f[i,j]=f[i,j-k*v[i]]+k*w[i]  类比01背包问题

代码实现

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ )
            for(int k = 0; k * v[i] <= j; k ++ )
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
    cout << f[n][m] << endl;
    
    return 0;
}

通过比较下列等式可以发现:

\small f[i,j] = max(f[i -1,j],f[i-1,j-v]+w,f[i-1,j-2v]+2w\cdots )

\small f[i,j-v]=max( f[i-1,j-v],f[i-1],f[i-1,j-2v]+w,f[i-2,j-3v]+2w\cdots )

得到:\large {\color{Red} f[i,j] = max(f[i - 1,j], f[i, j - v] + w)} 

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ )
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
    cout << f[n][m] << endl;
    
    return 0;
}

一维优化

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++ )
        for(int j = v[i]; j <= m; j ++ )
        {
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    cout << f[m] << endl;
    
    return 0;
}

对比01背包完全背包问题,有以下差异 :

01背包:f[i,j] = max(f[i,j], f[i - 1][j-v[i]] + w[i])

完全背包:f[i,j]=max(f[i,j],f[i][j - v[i]+ w[i])

对于完全背包来说,体积的枚举可以从 v[i] 枚举到 m,因为它每 i 层的更新使用的是第 i 层的数据不存在“数据污染”的问题


 多重背包问题

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

 

 f[i,j]=max(f[i-1][j-v[i] * k] + w[i] * k)


朴素写法 

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 110;

int n, m;
int v[N], w[N], s[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ )
            for(int k = 0; k <= s[i] && k * v[i] <= j; k ++ )
                f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);
    cout << f[n][m] <<  endl;
    
    return 0;
}

多重背包的二进制优化 

众所周知,从 \small 2^0,2^1,2^2\cdots 2^{k-1} 这 k 个2的整数次幂中选出若干个相加,可以表示出 \small 0\sim 2^{k}-1 之间的任意整数。进一步的,我们求出满足 \small 2^0+2^1+2^2\cdots +2^p\leqslant C_i 的最大整数 p,设\small R_i=C_i - 2^0-2^1-\cdots 2^p 那么:

  1. 根据 p 的最大性,有 \small 2^0+2^1+2^2\cdots +2^{p+1}> C_i ,可推出 \small 2^{p+1}>R_i,因此 \small 2^0,2^1,2^2\cdots 2^{p} 选出若干个相加可以表示出 \small 0\sim R_i 之间的任意整数;
  2. 从 \small 2^0,2^1,2^2\cdots 2^{p+1} 中选出若干个相加,可以表示出 \small R_i\sim R_i+2^{p+1}-1 之间的任何整数,而根据 Ri 的定义, \small R_i+2^{p+1}-1=C_i,因此,\small 2^0,2^1,2^2\cdots 2^{p},R_i 选出若干个可以表示出\small R_i\sim C_i 之间的任意整数。

综上所述,我们可以把数量为 \small C_i 的第 i 个物品拆成 p + 2个物品,他们的体积分别为:

        \small 2^0*V_i,2^1*V_i\cdots 2^p*V_i,R_i*V_i

这 p + 2 个物品可以凑成 \small 0\sim C_i*V_i 之间所有能被Vi整除的数,并且不能凑成大于 Ci * Vi 的数。这等价于原问题中体积为 Vi 的物品可以使用 0~Ci 次。该方法仅将每种物品拆分成了 \small O(logC_i) 个,效率较高。

代码实现

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 25000, M = 2010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    
    int cnt = 0;
    for(int i = 1; i <= n; i ++ )
    {
        int a, b, s;
        cin >> a >> b >> s;
        int k = 1;
        while(k <= s)
        {
            cnt ++ ;
            v[cnt] = a * k;
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        if(s > 0)
        {
            cnt ++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }
    n = cnt;
    
    for(int i = 1; i <= n; i ++ )
        for(int j = m; j >= v[i]; j -- )
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    
    cout << f[m] << endl;
    
    return 0;
}

 分组背包问题

输入样例

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例:

8


AC代码 

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 110;

int n, m;
int v[N][N], w[N][N], s[N];
int f[N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ )
    {
        cin >> s[i];
        for(int j = 0; j < s[i]; j ++ )
            cin >> v[i][j] >> w[i][j];
    }
    
    for(int i = 1; i <= n; i ++ )
        for(int j = m; j >= 0; j -- )
            for(int k = 0; k < s[i]; k ++ )
                if(v[i][k] <= j)
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
    
    cout << f[m] << endl;
    
    return 0;
}
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玄澈_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值