Hive优化的十条详细策略(下)

本文介绍了Hive优化的五个关键策略:并行执行通过设置`hive.exec.parallel`提高效率;严格模式通过`hive.mapred.mode=strict`防止资源浪费的查询;JVM重用通过调整Hadoop配置减少启动开销;推测执行通过开启Hadoop推测执行机制提升整体进度;压缩通过启用Map和Reduce阶段的压缩减少数据传输量。这些策略有助于提升Hive在大数据处理中的性能。
摘要由CSDN通过智能技术生成

继续我们前面地内容:
上篇:https://blog.csdn.net/Forever_ck/article/details/85777938
中篇:https://blog.csdn.net/Forever_ck/article/details/85780280
五、并行执行
Hive 会将一个查询转化成一个或者多个阶段。这样的阶段可以是 MapReduce 阶段、抽样阶段、合并阶段、limit 阶段。或者 Hive 执行过程中可能需要的其他阶段。默认情况下,Hive 一次只会执行一个阶段。不过,某个特定的 job 可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个 job 的执行时间缩短。不过,如果有更多的阶段可以并行执行,那么 job 可能就越快完成。

通过设置参数 hive.exec.parallel 值为 true,就可以开启并发执行。不过,在共享集群中, 需要注意下,如果 job 中并行阶段增多,那么集群利用率就会增加。

set hive.exec.parallel=true;    //打开任务并行执行
set hive.exec.parallel.thread.number=16;	//同一个 sql 允许最大并行度,默认为 8。

六、严格模式
Hive 提供了一个严格模式,可以防止用户执行那些可能意向不到的不好的影响的查询。通过设置属性 hive.mapred.mode 值为默认是非严格模式 nonstrict 。开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值