题目链接
由于是BZOJ的权限题,于是放的是darkbzoj的链接。
题意:
你有一个由
n
n
n个字符串组成的集合
S
S
S,然后有
q
q
q次操作。每次操作会在另一个集合
T
T
T中加入一个字符串,或者询问某一个在
S
S
S中的串在
T
T
T集合的所有串中的多少个中出现过。
n
,
q
<
=
1
e
5
n,q<=1e5
n,q<=1e5,总串长
<
=
2
e
6
<=2e6
<=2e6。
题解:
感觉写过了阿狸的打字机那个题之后,对这个题还是有一些启发的。感觉这个题并不是怎么难,我却写完了之后调了一晚上。我怎么这么菜啊,自闭了QAQ
做法的话,由于 T T T的串是动态加入的,于是我们对 T T T建AC自动机并不现实,因为AC自动机好像没法动态加串的时候还能在保证复杂度的情况下更新。于是我们考虑对已经有了的 S S S中的串建一个AC自动机。那么对于每一个 T T T中加进来的串,我们就考虑 S S S中的哪些串是它的子串,也就是哪些 S S S中的串答案要加一。我们知道,AC自动机的fail树上一个点 x x x到根的路径上的所有点都是根到 x x x表示的串的子串,于是我们就在AC自动机上不断地匹配 T T T的这个串,然后每匹配完一个字符,就找到AC自动机上的这个点在fail树上对应的点,那么fail树上这个点到根的路径上的每一个点出现的次数都要加一。这样每次加入一个串,我们会找到串长个fail树上的点,我们对它们按照dfs序排序,并且去掉相同的点。这样的话,我们其实是要给这些点到根的路径的并来加一。我们先dfs一遍fail树,预处理出dfs序和一个倍增LCA的数组。这样我们按照dfs序加入这些点,那么dfs序相邻的两个点会在LCA处多加一遍,那么我们在减去LCA处减去一。直接做的话是可以用树剖的,但是复杂度是两个log的,据说可能过不了。我们考虑能不能只修改相邻的两个点以及LCA处的值,并且还能比较容易的回答询问。我们的做法是,在回答询问时查询一个子树的和,由于我们处理了dfs序,所以也很好维护,这样的话我们就可以只在相邻的点加上一,fail树上的LCA处减去一就可以了。这个东西可以用一个树状数组或者线段树维护,树状数组好写并且常数小,于是我选择的是树状数组。
这样的话这个题就做完了,复杂度 O ( n l o g n ) O(nlogn) O(nlogn)。
代码:
#include <bits/stdc++.h>
using namespace std;
int n,qq,fail[2000010],cnt,ji[2000010],hed[4000010],num,b[2000010];
int f[2000010][23],xu[2000010],ed[2000010],dep[2000010],val[2000010];
char s[2000010];
queue<int> q;
struct node
{
int vis[26],c,fa;
}tr[2000010];
struct edge
{
int to,next;
}a[4000010];
inline void insert(int qwq)
{
int cur=1,len=strlen(s+1);
for(int i=1;i<=len;++i)
{
int x=s[i]-'a';
if(!tr[cur].vis[x])
{
tr[cur].vis[x]=++num;
tr[num].c=x;
tr[num].fa=cur;
}
cur=tr[cur].vis[x];
}
ji[qwq]=cur;
}
inline void build()
{
for(int i=0;i<=25;++i)
{
if(tr[1].vis[i])
{
q.push(tr[1].vis[i]);
fail[tr[1].vis[i]]=1;
}
}
while(!q.empty())
{
int x=q.front();
q.pop();
if(!fail[x])
{
int cur=fail[tr[x].fa],y=tr[x].c;
while(1)
{
if(tr[cur].vis[y])
{
cur=tr[cur].vis[y];
break;
}
if(cur==1)
break;
cur=fail[cur];
}
fail[x]=cur;
}
for(int i=0;i<=25;++i)
{
if(tr[x].vis[i])
q.push(tr[x].vis[i]);
}
}
}
inline void add(int from,int to)
{
a[++cnt].to=to;
a[cnt].next=hed[from];
hed[from]=cnt;
}
inline void dfs(int x)
{
xu[x]=++cnt;
for(int i=1;i<=22;++i)
f[x][i]=f[f[x][i-1]][i-1];
for(int i=hed[x];i;i=a[i].next)
{
int y=a[i].to;
if(y==f[x][0])
continue;
dep[y]=dep[x]+1;
f[y][0]=x;
dfs(y);
}
ed[x]=cnt;
}
inline void update(int x,int y)
{
if(x==1)
return;
for(int i=x;i<=num;i+=(i&(-i)))
val[i]+=y;
}
inline int query(int x)
{
int res=0;
for(int i=x;i;i-=(i&(-i)))
res+=val[i];
return res;
}
inline int cmp(int x,int y)
{
return xu[x]<xu[y];
}
inline int lca(int x,int y)
{
if(dep[x]<dep[y])
swap(x,y);
for(int i=22;i>=0;--i)
{
if(dep[f[x][i]]>=dep[y])
x=f[x][i];
}
if(x==y)
return x;
for(int i=22;i>=0;--i)
{
if(f[x][i]!=f[y][i]&&dep[f[x][i]])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
int main()
{
scanf("%d",&n);
num=1;
for(int i=1;i<=n;++i)
{
scanf("%s",s+1);
int len=strlen(s+1);
insert(i);
for(int i=1;i<=len;++i)
s[i]=0;
}
build();
for(int i=2;i<=num;++i)
add(fail[i],i);
cnt=0;
dep[1]=1;
dfs(1);
scanf("%d",&qq);
for(int j=1;j<=qq;++j)
{
int opt,x,len;
scanf("%d",&opt);
if(opt==1)
{
scanf("%s",s+1);
len=strlen(s+1);
int cur=1,shu=0;
for(int i=1;i<=len;++i)
{
int x=s[i]-'a';
while(!tr[cur].vis[x])
{
if(cur==1)
break;
cur=fail[cur];
}
if(cur==1&&(!tr[cur].vis[x]))
continue;
cur=tr[cur].vis[x];
b[++shu]=cur;
}
if(shu==0)
continue;
sort(b+1,b+shu+1,cmp);
update(xu[b[1]],1);
for(int i=2;i<=shu;++i)
{
if(b[i]==b[i-1])
continue;
int x=lca(b[i-1],b[i]);
update(xu[b[i]],1);
update(xu[x],-1);
}
for(int i=1;i<=len;++i)
s[i]=0;
}
else
{
scanf("%d",&x);
x=ji[x];
int ans=query(ed[x])-query(xu[x]-1);
printf("%d\n",ans);
}
}
return 0;
}