BZOJ3881 [Coci2015]Divljak AC自动机 树状数组 倍增LCA

19 篇文章 0 订阅
6 篇文章 0 订阅

题目链接
由于是BZOJ的权限题,于是放的是darkbzoj的链接。

题意:
你有一个由 n n n个字符串组成的集合 S S S,然后有 q q q次操作。每次操作会在另一个集合 T T T中加入一个字符串,或者询问某一个在 S S S中的串在 T T T集合的所有串中的多少个中出现过。 n , q &lt; = 1 e 5 n,q&lt;=1e5 n,q<=1e5,总串长 &lt; = 2 e 6 &lt;=2e6 <=2e6

题解:
感觉写过了阿狸的打字机那个题之后,对这个题还是有一些启发的。感觉这个题并不是怎么难,我却写完了之后调了一晚上。我怎么这么菜啊,自闭了QAQ

做法的话,由于 T T T的串是动态加入的,于是我们对 T T T建AC自动机并不现实,因为AC自动机好像没法动态加串的时候还能在保证复杂度的情况下更新。于是我们考虑对已经有了的 S S S中的串建一个AC自动机。那么对于每一个 T T T中加进来的串,我们就考虑 S S S中的哪些串是它的子串,也就是哪些 S S S中的串答案要加一。我们知道,AC自动机的fail树上一个点 x x x到根的路径上的所有点都是根到 x x x表示的串的子串,于是我们就在AC自动机上不断地匹配 T T T的这个串,然后每匹配完一个字符,就找到AC自动机上的这个点在fail树上对应的点,那么fail树上这个点到根的路径上的每一个点出现的次数都要加一。这样每次加入一个串,我们会找到串长个fail树上的点,我们对它们按照dfs序排序,并且去掉相同的点。这样的话,我们其实是要给这些点到根的路径的并来加一。我们先dfs一遍fail树,预处理出dfs序和一个倍增LCA的数组。这样我们按照dfs序加入这些点,那么dfs序相邻的两个点会在LCA处多加一遍,那么我们在减去LCA处减去一。直接做的话是可以用树剖的,但是复杂度是两个log的,据说可能过不了。我们考虑能不能只修改相邻的两个点以及LCA处的值,并且还能比较容易的回答询问。我们的做法是,在回答询问时查询一个子树的和,由于我们处理了dfs序,所以也很好维护,这样的话我们就可以只在相邻的点加上一,fail树上的LCA处减去一就可以了。这个东西可以用一个树状数组或者线段树维护,树状数组好写并且常数小,于是我选择的是树状数组。

这样的话这个题就做完了,复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

代码:

#include <bits/stdc++.h>
using namespace std;

int n,qq,fail[2000010],cnt,ji[2000010],hed[4000010],num,b[2000010];
int f[2000010][23],xu[2000010],ed[2000010],dep[2000010],val[2000010];
char s[2000010];
queue<int> q;
struct node
{
	int vis[26],c,fa;
}tr[2000010];
struct edge
{
	int to,next;
}a[4000010];
inline void insert(int qwq)
{
	int cur=1,len=strlen(s+1);
	for(int i=1;i<=len;++i)
	{
		int x=s[i]-'a';
		if(!tr[cur].vis[x])
		{
			tr[cur].vis[x]=++num;
			tr[num].c=x;
			tr[num].fa=cur;
		}
		cur=tr[cur].vis[x];
	}
	ji[qwq]=cur;
}
inline void build()
{
	for(int i=0;i<=25;++i)
	{
		if(tr[1].vis[i])
		{
			q.push(tr[1].vis[i]);
			fail[tr[1].vis[i]]=1;
		}
	}
	while(!q.empty())
	{
		int x=q.front();
		q.pop();
		if(!fail[x])
		{
			int cur=fail[tr[x].fa],y=tr[x].c;
			while(1)
			{
				if(tr[cur].vis[y])
				{
					cur=tr[cur].vis[y];
					break;
				}
				if(cur==1)
				break;
				cur=fail[cur];
			}
			fail[x]=cur;
		}
		for(int i=0;i<=25;++i)
		{
			if(tr[x].vis[i])
			q.push(tr[x].vis[i]);
		}
	}
}
inline void add(int from,int to)
{
	a[++cnt].to=to;
	a[cnt].next=hed[from];
	hed[from]=cnt;
}
inline void dfs(int x)
{
	xu[x]=++cnt;
	for(int i=1;i<=22;++i)
	f[x][i]=f[f[x][i-1]][i-1];
	for(int i=hed[x];i;i=a[i].next)
	{
		int y=a[i].to;
		if(y==f[x][0])
		continue;
		dep[y]=dep[x]+1;
		f[y][0]=x;
		dfs(y);
	}
	ed[x]=cnt;
}
inline void update(int x,int y)
{
	if(x==1)
	return;
	for(int i=x;i<=num;i+=(i&(-i)))
	val[i]+=y;
}
inline int query(int x)
{
	int res=0;
	for(int i=x;i;i-=(i&(-i)))
	res+=val[i];
	return res;
}
inline int cmp(int x,int y)
{
	return xu[x]<xu[y];
}
inline int lca(int x,int y)
{
	if(dep[x]<dep[y])
	swap(x,y);
	for(int i=22;i>=0;--i)
	{
		if(dep[f[x][i]]>=dep[y])
		x=f[x][i];
	}
	if(x==y)
	return x;
	for(int i=22;i>=0;--i)
	{
		if(f[x][i]!=f[y][i]&&dep[f[x][i]])
		{
			x=f[x][i];
			y=f[y][i];
		}
	}
	return f[x][0];
}
int main()
{
	scanf("%d",&n);
	num=1;
	for(int i=1;i<=n;++i)
	{
		scanf("%s",s+1);
		int len=strlen(s+1);
		insert(i);
		for(int i=1;i<=len;++i)
		s[i]=0;
	}
	build();
	for(int i=2;i<=num;++i)
	add(fail[i],i);
	cnt=0;
	dep[1]=1;
	dfs(1);
	scanf("%d",&qq);
	for(int j=1;j<=qq;++j)
	{
		int opt,x,len;
		scanf("%d",&opt);
		if(opt==1)
		{
			scanf("%s",s+1);
			len=strlen(s+1);
			int cur=1,shu=0;
			for(int i=1;i<=len;++i)
			{
				int x=s[i]-'a';
				while(!tr[cur].vis[x])
				{
					if(cur==1)
					break;
					cur=fail[cur];
				}
				if(cur==1&&(!tr[cur].vis[x]))
				continue;
				cur=tr[cur].vis[x];
				b[++shu]=cur;
			}
			if(shu==0)
			continue;						
			sort(b+1,b+shu+1,cmp);
			update(xu[b[1]],1);			
			for(int i=2;i<=shu;++i)
			{			
				if(b[i]==b[i-1])
				continue;
				int x=lca(b[i-1],b[i]);				
				update(xu[b[i]],1);				
				update(xu[x],-1);
			}
			for(int i=1;i<=len;++i)
			s[i]=0;
		}
		else
		{
			scanf("%d",&x);
			x=ji[x];
			int ans=query(ed[x])-query(xu[x]-1);
			printf("%d\n",ans);
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值