BZOJ2839 集合计数 容斥原理 组合数学

19 篇文章 0 订阅
11 篇文章 0 订阅

题目链接

这个题是个权限题,我用同学的权限号交的。最近darkbzoj挂掉了,于是只能借权限号来交了。

题意:
一个有 n n n个元素的集合有 2 n 2^n 2n个不同子集(包含空集),现在要在这 2 n 2^n 2n个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为 k k k,求取法的方案数,答案模1000000007。 n , k &lt; = 1 e 6 n,k&lt;=1e6 n,k<=1e6

题解:
我们首先肯定是考虑直接计数。首先 n n n个数中可以任意选出 k k k个,所以应该会有一个 C n k C_n^{k} Cnk的组合数。我们规定当前的交集就是组合数选出的这 k k k个数,那么剩下数的应该是可以任意选或者不选,于是会有 2 n − k 2^{n-k} 2nk种集合。而这些集合可以任意选或者不选,但是不能一个都不选,于是方案数是 2 2 n − k − 1 2^{2^{n-k}}-1 22nk1种。但是我们考虑到这样计算是会多算的,因为我们不能保证最后交集就一定是这 k k k个数,还可能会更大,也就是说我们算出来的实际上是交集至少是 k k k个数的方案数。遇到这种至多至少的情况,我们经常会去考虑容斥。我们用至少 k k k个的减去至少 k + 1 k+1 k+1个的加上至少 k + 2 k+2 k+2个的这样以此类推。但是我们发现,我们在枚举选出的是哪 k + 1 k+1 k+1个的时候,我们对于交集为 k k k的答案算了 C k + 1 k C_{k+1}^k Ck+1k遍,于是最后还要乘上一个组合数。

最后整理一下式子: a n s = ∑ i = k n ( − 1 ) i − k ∗ C i k ∗ C n i ∗ ( 2 2 n − i − 1 ) ans=\sum_{i=k}^n(-1)^{i-k}*C_{i}^{k}*C_{n}^{i}*(2^{2^{n-i}}-1) ans=i=kn(1)ikCikCni(22ni1)

但是这个快速幂并不能直接算,因为这里我们要用到欧拉定理。 a ϕ ( p ) = 1 ( m o d   p )   ( g c d ( a , p ) = 1 ) a^{\phi(p)}=1(mod\ p)\ (gcd(a,p)=1) aϕ(p)=1(mod p) (gcd(a,p)=1),那么 a n = a n − ϕ ( p ) ( m o d   p ) = a n % ϕ ( p ) ( m o d   p ) a^{n}=a^{n-\phi(p)}(mod\ p)=a^{n\%\phi(p)}(mod\ p) an=anϕ(p)(mod p)=an%ϕ(p)(mod p)。由于 p p p是质数,于是 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1,这样我们就可以正确算出答案了。

阶乘和逆元 O ( n ) O(n) O(n)预处理一下来算组合数。复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)的,但是如果你倒着枚举,那么你可以不用写快速幂,是可以做到 O ( n ) O(n) O(n)的。

代码:

#include <bits/stdc++.h>
using namespace std;

long long n,k;
const long long mod=1000000007;
long long jie[1000010],ni[1000010],ans;
inline long long ksm(long long x,long long y,long long mod)
{
	long long res=1;
	while(y)
	{
		if(y&1)
		res=res*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return res;
}
int main()
{
	scanf("%lld%lld",&n,&k);
	jie[0]=1;
	for(long long i=1;i<=n;++i)
	jie[i]=jie[i-1]*i%mod;
	ni[n]=ksm(jie[n],mod-2,mod);
	for(long long i=n-1;i>=0;--i)
	ni[i]=ni[i+1]*(i+1)%mod;
	for(long long i=n;i>=k;--i)
	{
		if((i-k)&1)
		ans=(ans-(ksm(2ll,ksm(2ll,n-i,mod-1),mod)-1ll+mod)%mod*jie[i]%mod*ni[k]%mod*ni[i-k]%mod*jie[n]%mod*ni[i]%mod*ni[n-i]%mod+mod)%mod;
		else
		ans=(ans+(ksm(2ll,ksm(2ll,n-i,mod-1),mod)-1ll+mod)%mod*jie[i]%mod*ni[k]%mod*ni[i-k]%mod*jie[n]%mod*ni[i]%mod*ni[n-i]%mod)%mod;
	}
	printf("%lld\n",ans);
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值