目前所处的办公环境限制较多,对搭建开发环境造成较大阻碍,在安装pytorch时, pip和conda库不能及时更新,很多时候需要手动安装。在这样的背景下,本文记录pytorch和faster-rcnn.pytorch 的在使用过程中的问题。
1. pytorch的安装
pytorch的安装首先需要确定安装的版本,其次要明确当前cuda的版本,最后还要知道所使用的python版本。一般来讲,如果使用官方库安装,安装的pytorch应该是在对应版本的cuda下编译的,但是由于本人所处的环境,pip和conda库不能及时更新,所以很多时候pytorch很当前环境所使用的cuda并不能对应,因此需要手动去官网下载经对应版本的cuda编译的pytoch。例如,当前环境下,cuda版本是9.2,需要的pytorch版本是0.4.1,使用的python版本为3.6,那么下载的连接即是:https://download.pytorch.org/whl/cu92/torch-0.4.1-cp36-cp36m-linux_x86_64.whl
2. faster-rcnn.pytorch使用记录
使用faster-rcnn.pytorch,需要进行编译,make.sh中关于cuda的部分如下:
CUDA_ARCH="-gencode arch=compute_30,code=sm_30
-gencode arch=compute_35,code=sm_35
-gencode arch=compute_50,code=sm_50
-gencode arch=compute_52,code=sm_52
-gencode arch=compute_60,code=sm_60
-gencode arch=compute_61,code=sm_61 "
但由于本人使用的GPU是Tesla v100,它所对应的gencode是:
-gencode arch=compute_71,code=sm_71
因此,需要把上述代码加到make.sh中。