pytorch安装及faster-rcnn.pytorch使用记录

目前所处的办公环境限制较多,对搭建开发环境造成较大阻碍,在安装pytorch时, pip和conda库不能及时更新,很多时候需要手动安装。在这样的背景下,本文记录pytorch和faster-rcnn.pytorch 的在使用过程中的问题。

1. pytorch的安装

pytorch的安装首先需要确定安装的版本,其次要明确当前cuda的版本,最后还要知道所使用的python版本。一般来讲,如果使用官方库安装,安装的pytorch应该是在对应版本的cuda下编译的,但是由于本人所处的环境,pip和conda库不能及时更新,所以很多时候pytorch很当前环境所使用的cuda并不能对应,因此需要手动去官网下载经对应版本的cuda编译的pytoch。例如,当前环境下,cuda版本是9.2,需要的pytorch版本是0.4.1,使用的python版本为3.6,那么下载的连接即是:https://download.pytorch.org/whl/cu92/torch-0.4.1-cp36-cp36m-linux_x86_64.whl

2. faster-rcnn.pytorch使用记录

使用faster-rcnn.pytorch,需要进行编译,make.sh中关于cuda的部分如下:

CUDA_ARCH="-gencode arch=compute_30,code=sm_30
-gencode arch=compute_35,code=sm_35
-gencode arch=compute_50,code=sm_50
-gencode arch=compute_52,code=sm_52
-gencode arch=compute_60,code=sm_60
-gencode arch=compute_61,code=sm_61 "

但由于本人使用的GPU是Tesla v100,它所对应的gencode是:

-gencode arch=compute_71,code=sm_71

因此,需要把上述代码加到make.sh中。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值