推荐系统实战--movieslens数据集实现UserCF算法

UserCF:UserCollaborationFilter,基于用户的协同过滤   算法核心思想:在一个在线推荐系统中,当用户A需要个性化推荐时,可以先找到和他有相似兴趣的其它用户,然后把那些用户喜欢的、而用户A没有听说过的物品推荐给A,这种方法称为基于用户的协同过滤算法。  可以看出,这...

2018-10-20 17:19:29

阅读数 300

评论数 0

循环神经网络VGG

VGGnet 模型们在ImageNet竞赛上的top-5错误率概况:   目的: 探究在大规模图像识别任务中,卷积网络的深度与其性能之间的关系 做法: VGG把 Alexnet 最开始的一个7*7的卷积核用 3个3*3的卷积核代替。 通过反复堆叠3*3的小型卷积核(stride:1...

2018-11-26 20:31:41

阅读数 46

评论数 0

逻辑回归的常见面试点总结

1.简介        逻辑回归是面试当中非常喜欢问到的一个机器学习算法,因为表面上看逻辑回归形式上很简单,很好掌握,但是一问起来就容易懵逼。所以在面试的时候给大家的第一个建议不要说自己精通逻辑回归,非常容易被问倒,从而减分。 2.正式介绍      如何凸显你是一个对逻辑回归已经非常了解的...

2018-10-23 17:21:02

阅读数 35

评论数 0

基于python的-使用正则表达式验证手机号并匹配运营商和所述地域

import re import json # 将语句中不符合手机号码规则的数字串剔除,保存剩余符合手机号码规则的数字到ns中 def is_phone(n): ns = re.findall('\d+', n) # 提取出word语句中的数字 new_list = ns[...

2018-07-27 17:09:07

阅读数 346

评论数 0

三、机器学习算法学习---梯度下降法(6-3实现多元线性回归中的梯度下降法)

多元函数中梯度变为:且有两个参数的梯度下降法的可视化实例:在损失函数中:为了使得到的梯度值和m无关,则式子整体除以m则得到以下结论:

2018-04-15 10:42:10

阅读数 95

评论数 0

三、机器学习算法学习---梯度下降法(6-1和6-2 什么是梯度下降法)

简单理解就是:这个式子代表每一次减小的量(为一个梯度),当一直减小到两次迭代之间的差值足够小,既得到损失函数J的最小值。

2018-04-14 16:09:59

阅读数 79

评论数 0

(补)二、机器学习算法学习---线性回归算法(5-10 线性回归的可解释性)

2018-04-14 11:22:48

阅读数 53

评论数 0

(补)二、机器学习算法学习---线性回归算法(5-7多元线性回归和正规方程解)

               

2018-04-12 19:55:06

阅读数 88

评论数 0

(补)二、机器学习算法学习---线性回归算法(5-6 最好的衡量线性回归法的指标)

R square所得到的结果是:一减去我们预测所得到的错误占了所有的错误的百分比所得到的数,也就是没有产生的错误

2018-04-12 10:52:34

阅读数 92

评论数 0

(补)二、机器学习算法学习---线性回归算法(5-5线性回归方法的衡量标准)

因为M的影响,所以有三种改进方法*注:当比如使用预测钱时,有1万元,计算结束后单位变为平方万,所以有以下改进

2018-04-12 09:52:08

阅读数 39

评论数 0

(补)二、机器学习算法学习---线性回归算法(5-4 衡量线性回归的指标)

可以将上面的式子转化为两个向量的乘积,即可直接替换for循环节约时间向量间的点乘替换for循环的乘积

2018-04-11 16:04:18

阅读数 52

评论数 0

(补)二、机器学习算法学习---线性回归算法(5-3简单线性回归实现)

2018-04-10 16:27:39

阅读数 40

评论数 0

(补)二、机器学习算法学习---线性回归算法(5-2最小乘法)

对b求导对a求导,并带入b

2018-04-10 15:36:21

阅读数 52

评论数 0

(补)一、机器学习算法学习---K近邻算法(4-9总结)

解决方法降维

2018-04-09 16:01:59

阅读数 41

评论数 0

(补)一、机器学习算法学习---K近邻算法(4-8如何数据归一化)

手动实现一个standardScaler

2018-04-09 15:54:03

阅读数 268

评论数 0

(补)一、机器学习算法学习---K近邻算法(4-7数值归一化)

2018-04-09 14:50:33

阅读数 101

评论数 0

(补)一、机器学习算法学习---K近邻算法(4-6网格搜索)

2018-04-09 11:10:28

阅读数 51

评论数 0

(补)一、机器学习算法学习---K近邻算法(4-5超参数 )

 曼哈顿距离:指点在每个维度上相应的距离的和(点在二维中既指在x方向的差值和在y方向中的差值的和)

2018-04-09 09:47:43

阅读数 113

评论数 0

二、机器学习算法学习---线性回归算法

线性回归:例子:房屋的面积和价格有一定的线性关系注:1.分类问题横轴和纵轴都是样本的特征点(横轴代表肿瘤的大小,纵轴代表肿瘤的出现时间)       2.线性回归问题横轴为样本特征(房屋面积),纵轴为输出标记(价格)       3.回归问题中正真要预测的是一个具体的数值,数值在一个连续的空间里....

2018-03-28 16:46:50

阅读数 62

评论数 0

一、机器学习算法学习---K近邻算法

解释:假设一个值为K=3,当新的绿色的肿瘤周围最近的三个点的颜色比例:   蓝:红=3:0时,表明这个新的点更接近蓝色点的特征。代码实现//加载numpy包和matplotlib.pyplot包import numpy as npimport matplotlib.pyplot as plt//原...

2018-03-21 16:11:39

阅读数 195

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭