21位水仙花数的高效算法(耗时仅20毫秒)

网上有很多讨论 21 位水仙花数算法 的旧帖子,大概这曾经是一个竞赛题目。所见到的各种语言的代码,运行耗时大多在 10 秒到数分钟,也有个别是在 10 秒以内的,高位水仙花数算法还有不少优化空间。

网上找不到 21位水仙花数的 fortran 版本,可能这门语言太古老了!

本文的这个算法是 fortran90 版的,将运行耗时缩短到了 20 毫秒。
有详细注解,供参考。

如果是 39 位,运行耗时为 150 毫秒
测试环境:Win7,CPU主频3.2GHz / 3.6GHz(睿频)。


算法要点:

A、自定义数据结构 big_integer 表示大整数,构建加法和乘法运算子程序。
B、定义数组 s,预存数字 1 到 9 的 nn 次方及其 0 到 nn 倍数值,减少重复计算。
C、采用递归算法,简化代码,将递归层次 n 之外的所有递归参数都定义为公共变量,提高效率;递归枚举数字 9 到 1 的个数组合,总和不超过 nn 位;0 的个数不需要递归求解, 递归结束时自然确定;n 为 1 时,检验是否为水仙花数。
D、提前剪枝策略:
a、递归从 9 开始,到 1 结束;每一层的个数循环从大到小;剩余可选数量记为 nb;
b、检查各位数字幂的和值 tt 的位数,大于 nn 则 cycle;小于 nn,且增加剩余可选数最大幂和值仍不到 nn 位,则退出本层递归;
c、n 大于等于 2 时,根据后续 nb 个数字 s 的最大值,确定 tt 不受影响的高位部分,统计其中已选数字和未选数字的个数;已选数字个数大于选定个数的, 或者 0 到 (n-1) 未选数字个数大于 nb 的,提前剪枝,退出后续递归;根据高位已出现数字调整递归循环的上下限。此为提高效率的关键。


代码以 21 位为例如需计算 39 位水仙花数,只需修改常量 nn = 39 。


$freeform

! 搜寻nn位水仙花数的快速算法
! 2024-07-18
! szw_sh@163.com

! CVF编译项:DF /Ox



module abc                                            ! 公共变量

   integer*1 nn                                       ! 水仙花数的位数
   parameter(nn=21)
   
   type big_integer                                   ! 定义大整数类型
      integer*1 a(nn+3)                               ! 考虑进位计算,取nn+3位
      integer*1 digit                                 ! a 各位数字,a(1)是最低位;digit 位数
   end type

   type(big_integer) s(9,0:nn)                        ! 1到9的nn次方及其0到nn倍数值表
   type(big_integer) tt(10),t1,t2

   integer*1 b(0:9),b1                                ! 统计数字个数的临时数组
   integer*1 nb(10)                                   ! 未选数字的个数
   integer*1 a(9)                                     ! 数字个数组合

   character*(nn) h                                   ! 用于转换和输出大整数

end module



use abc                                               ! 主程序
integer*1 n
call cpu_time(x)                                      ! 启动计时,初始化s
call init
write(*,'(/2x,a,i2)') 'n = ',nn

call equ(tt(10),0_1)
nb(10)=nn
n=9
b=0
b1=0
call cc(n)

call cpu_time(x)                                      ! 输出总时耗
nt=x*1000
write(*,'(/2x,a,g0,a)') 'time = ',nt,' ms'

end



recursive subroutine cc(n)                            ! 查找水仙花数的递归子程序

use abc
integer*1 n,i,j,k,ii

do i=nb(n+1)-b1+b(n),b(n),-1                          ! 循环+递归,构造9到1的数字个数组合

   a(n)=i
   nb(n)=nb(n+1)-i
   call add(tt(n+1),s(n,i),tt(n))                     ! 计算数字nn次幂的和,只计算变化的位

   if(tt(n)%digit.gt.nn) then                         ! 位数超出nn,循环递减a(n)
      cycle
   else if(tt(n)%digit.lt.nn) then                    ! 位数不达nn,根据后续nb预测仍不达nn的,退出递归
      call add(tt(n),s(n-1,nb(n)),t2)
      if(t2%digit.lt.nn) exit
   end if

   if(n.gt.1) then

      k=s(n-1,nb(n))%digit+1                          ! 未选数字构成nn次幂和值的最大值可能产生的进位位置

      do ii=k,nn                                      ! 向高位检查是否存在连续9,避免出现进位漏查情形
         if(tt(n)%a(ii).ne.9) exit                    ! 经测试,有数百万个
      end do

      b=0
      b1=0
      do j=ii+1,nn                                    ! 统计tt高位不变化位置的数字

         k=tt(n)%a(j)
         b(k)=b(k)+1

         if(k.ge.n) then                              ! 已选数字,若tt中的大于已选,提前退出统计
            if(b(k).gt.a(k)) exit
         else                                         ! 0(n-1)的未选数字,若tt中的大于剩余未选个数的,提前退出
            b1=b1+1
            if(b1.gt.nb(n)) exit
         end if

      end do

      if(j.le.nn) cycle                               ! 判定tt存在已选、未选数字的矛盾的情形,提前剪枝

      call cc(n-1_1)                                  ! 继续递归调用

   else                                               ! 递归结束

      b=0                                             ! 统计tt各数字的数量
      b1=0
      do j=1,nn

         k=tt(n)%a(j)
         b(k)=b(k)+1

         if(k.gt.0) then
            if(b(k).gt.a(k)) exit                     ! 若超出已选的数量,矛盾,提前跳出
         else
            b1=b1+1
            if(b1.gt.nb(n)) exit
         end if

      end do

      if(j.le.nn) cycle                               ! 若有矛盾,跳过

      call chr(tt(n),h)                               ! tt转为字符串
      if(h.eq.'0') cycle                              ! 结果为0的,不计入水仙花数
      write(*,'(2x,a)') trim(h)                       ! 输出找到的水仙花数

   end if

end do

end



subroutine equ(aa,n)                                  ! 大整数赋值子程序,aa=n,n<10

use abc
type(big_integer) aa
integer*1 n

aa%a=0
aa%digit=1
aa%a(1)=n

end



subroutine mul(aa,bb,n)                               ! 大整数乘法子程序,bb=aa*n,n<100

use abc
type(big_integer) aa,bb
integer*2 k,k1,kn
integer*1 i,ii,n

if(n.eq.0.or.aa%digit.eq.1.and.aa%a(1).eq.0) then     ! n=0 或者 aa=0
   call equ(bb,0_1)
   return
else if(n.eq.1) then                                  ! n=1
   bb=aa
   return
end if

bb%a=0                                                ! 初始化bb,进位数k1
k1=0
ii=aa%digit
kn=n

do i=1,ii+3                                           ! 分段乘法,进位
   k=aa%a(i)*kn+k1
   bb%a(i)=mod(k,10)
   k1=k/10
end do

bb%digit=ii                                           ! 确定位数
if(bb%a(ii+1).ne.0) bb%digit=ii+1

end



subroutine add(aa,bb,cc)                              ! 大整数加法子程序,cc=aa+bb

use abc
type(big_integer) aa,bb,cc
integer*1 k,k1,i,ii

cc%a=0                                                ! 初始化cc,进位数k1
k1=0
ii=max(aa%digit,bb%digit)

do i=1,ii+1                                           ! 分段加法,进位
   k=aa%a(i)+bb%a(i)+k1
   cc%a(i)=k                                          ! 默认不进位
   k1=0
   if(k.ge.10) then                                   ! 处理进位情形
      cc%a(i)=k-10                                    ! 因为最大进位为1,不用mod,直接用减法
      k1=1
   end if
end do

cc%digit=ii                                           ! 确定位数
if(cc%a(ii+1).gt.0) cc%digit=ii+1

end



subroutine chr(aa,hh)                                 ! 大整数转字符串子程序,hh=aa

use abc
character*(nn) hh
type(big_integer) aa
integer*1 j

hh=' '

do j=1,nn
   hh(nn-j+1:nn-j+1)=char(48+aa%a(j))
end do

end



subroutine init

use abc                                               ! 初始化数组s
type(big_integer) s1,s2
integer*1 i,j,k

do i=1,9
   call equ(s1,1_1)
   do j=1,nn
      call mul(s1,s2,i)
      s1=s2
      if(j.lt.nn) cycle
      do k=0,nn
         call mul(s1,s(i,k),k)
      end do
   end do
end do

end


21位的运行结果:

  
  n = 21
  449177399146038697307
  128468643043731391252

  time = 18 ms
  

39位的运行结果:

  
  n = 39
  115132219018763992565095597973971522401
  115132219018763992565095597973971522400

  time = 152 ms


软木酒塞 + 牛皮纸袋
配图无关代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值